Create adapters/local_gguf_adapter.py
Browse files
adapters/local_gguf_adapter.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# adapters/local_gguf_adapter.py
|
| 2 |
+
from typing import List
|
| 3 |
+
from .base import BaseModelAdapter
|
| 4 |
+
|
| 5 |
+
class LocalGGUFAdapter(BaseModelAdapter):
|
| 6 |
+
"""
|
| 7 |
+
Interface placeholder for llama.cpp/gguf runners.
|
| 8 |
+
Implement with your local runner; for now, returns simple echoes.
|
| 9 |
+
"""
|
| 10 |
+
def __init__(self, model_path="models/llama.gguf", embed_dim=384):
|
| 11 |
+
self.model_path = model_path
|
| 12 |
+
self.dim = embed_dim
|
| 13 |
+
|
| 14 |
+
def generate(self, prompt: str) -> str:
|
| 15 |
+
return f"[gguf:{self.model_path}] {prompt.strip()}"
|
| 16 |
+
|
| 17 |
+
def embed_text(self, text: str) -> List[float]:
|
| 18 |
+
import numpy as np, hashlib
|
| 19 |
+
h = hashlib.md5((self.model_path + "||" + text).encode()).digest()
|
| 20 |
+
seed = int.from_bytes(h[:8], "little")
|
| 21 |
+
rng = np.random.default_rng(seed)
|
| 22 |
+
return rng.standard_normal(self.dim).astype("float32").tolist()
|