class EmergentProgrammer: def __init__(self): self.action_primitives = ['map', 'filter', 'reduce', 'transform', 'compose'] self.discovered_actions = set() self.fractal_scales = {} # scale_level: {actions, dependencies} def discover_from_conditions(self, conditions, parameters, scale_level=0): """Discover new programming actions from conditions and parameters""" discovered = [] # Analyze parameter patterns for action discovery param_patterns = self._analyze_parameter_patterns(parameters) condition_structure = self._analyze_condition_structure(conditions) # Generate new actions based on patterns for pattern in param_patterns: new_action = self._synthesize_action(pattern, condition_structure) if new_action and self._validate_action(new_action, scale_level): discovered.append(new_action) self.discovered_actions.add(new_action) # Update fractal scale registry self._update_fractal_scale(scale_level, discovered, parameters) return discovered def _synthesize_action(self, pattern, conditions): """Synthesize new action from patterns and conditions""" # Pattern-based action generation if pattern.get('type') == 'iterative': return f"cascade_{pattern.get('domain')}" elif pattern.get('type') == 'transformative': return f"resonate_{conditions.get('context', 'general')}" elif pattern.get('type') == 'emergent': return f"fractalize_{pattern.get('complexity')}" return None def _validate_action(self, action, scale_level): """Validate action maintains fractal resonance""" # Check scale consistency (EFL Axiom) curvature = self._compute_action_curvature(action, scale_level) return abs(curvature) < 0.1 # Maintain flat emergence