File size: 4,234 Bytes
a859d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
language: en
license: mit
tags:
- fake-news-detection
- deberta-v3-large
- text-classification
- binary-classification
- news-classification
datasets:
- mrisdal/fake-news
- jainpooja/fake-news-detection
- clmentbisaillon/fake-and-real-news-dataset
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: "Scientists announce breakthrough discovery of alien life on Mars!"
  example_title: "Suspicious Claim"
- text: "The Federal Reserve announced a 0.25% interest rate increase following their monthly meeting."
  example_title: "Financial News"
model-index:
- name: Arko007/fact-check1-v1
  results:
  - task:
      type: text-classification
      name: Fake News Detection
    metrics:
    - type: accuracy
      value: 99.98
      name: Validation Accuracy
    - type: f1
      value: 99.98
      name: Validation F1-Score
---
# 🏆 Elite Fake News Detection Model

## Model Description
This is a **state-of-the-art** fake news detection model based on **DeBERTa-v3-large**, achieving **99.98% accuracy** on validation data. The model was fine-tuned on a carefully curated and deduplicated dataset combining multiple high-quality fake news datasets, totaling **51,319 samples** after preprocessing.

## 🚀 Performance Highlights
- **Validation Accuracy**: 99.98%
- **Test Accuracy**: 99.94%
- **F1-Score**: 99.98%
- **Precision**: 99.97%
- **Recall**: 100.00%

## Model Architecture
- **Base Model**: microsoft/deberta-v3-large
- **Task**: Binary Text Classification (Real vs Fake News)
- **Parameters**: ~400M parameters
- **Training Hardware**: NVIDIA A100-SXM4-80GB

## Training Details
- **Training Steps**: 640
- **Batch Size**: 64
- **Learning Rate**: 3e-05
- **Max Length**: 512 tokens
- **Training Time**: 0.43 hours
- **Gradient Checkpointing**: Non-reentrant (memory optimized)

## Dataset Information
**Total Samples**: 51,319
- **Training**: 41,055 samples
- **Validation**: 5,132 samples
- **Test**: 5,132 samples
- **Fake News**: 30,123 samples
- **Real News**: 21,196 samples
**Source Datasets**:
- `mrisdal/fake-news`
- `jainpooja/fake-news-detection`
- `clmentbisaillon/fake-and-real-news-dataset`

## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
model_name = "Arko007/fact-check1-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Example prediction function
def predict_fake_news(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    with torch.no_grad():
        outputs = model(**inputs)
        probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
        prediction = torch.argmax(probabilities, dim=-1).item()

    labels = {0: "REAL", 1: "FAKE"}
    confidence = probabilities[0][prediction].item()

    return {
        "prediction": labels[prediction],
        "confidence": confidence,
        "probabilities": {
            "REAL": probabilities[0][0].item(),
            "FAKE": probabilities[0][1].item()
        }
    }

# Test the model
text = "Breaking: Scientists discover new planet in our solar system!"
result = predict_fake_news(text)
print(f"Prediction: {result['prediction']} ({result['confidence']:.2%} confidence)")
```
## Model Performance

This model achieves **research-grade performance** on fake news detection, with near-perfect accuracy across all metrics. The high precision and recall indicate excellent balance between catching fake news while avoiding false positives on real news.

## Limitations and Bias

- Trained primarily on English news articles
- Performance may vary on news domains not represented in training data
- May reflect biases present in the source datasets
- Designed for binary classification (fake vs real) only

## Citation
```bibtex
@misc{fake-news-deberta-2025,
author = {Arko007},
title = {Elite Fake News Detection with DeBERTa-v3-Large},
year = {2025},
publisher = {Hugging Face},
url = {[https://huggingface.co/](https://huggingface.co/)Arko007/fact-check1-v1}
}
```
## License
MIT License - Feel free to use this model for research and applications.
---
**Built with ❤️ using A100 80GB + DeBERTa-v3-Large**