File size: 4,234 Bytes
a859d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
language: en
license: mit
tags:
- fake-news-detection
- deberta-v3-large
- text-classification
- binary-classification
- news-classification
datasets:
- mrisdal/fake-news
- jainpooja/fake-news-detection
- clmentbisaillon/fake-and-real-news-dataset
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: "Scientists announce breakthrough discovery of alien life on Mars!"
example_title: "Suspicious Claim"
- text: "The Federal Reserve announced a 0.25% interest rate increase following their monthly meeting."
example_title: "Financial News"
model-index:
- name: Arko007/fact-check1-v1
results:
- task:
type: text-classification
name: Fake News Detection
metrics:
- type: accuracy
value: 99.98
name: Validation Accuracy
- type: f1
value: 99.98
name: Validation F1-Score
---
# 🏆 Elite Fake News Detection Model
## Model Description
This is a **state-of-the-art** fake news detection model based on **DeBERTa-v3-large**, achieving **99.98% accuracy** on validation data. The model was fine-tuned on a carefully curated and deduplicated dataset combining multiple high-quality fake news datasets, totaling **51,319 samples** after preprocessing.
## 🚀 Performance Highlights
- **Validation Accuracy**: 99.98%
- **Test Accuracy**: 99.94%
- **F1-Score**: 99.98%
- **Precision**: 99.97%
- **Recall**: 100.00%
## Model Architecture
- **Base Model**: microsoft/deberta-v3-large
- **Task**: Binary Text Classification (Real vs Fake News)
- **Parameters**: ~400M parameters
- **Training Hardware**: NVIDIA A100-SXM4-80GB
## Training Details
- **Training Steps**: 640
- **Batch Size**: 64
- **Learning Rate**: 3e-05
- **Max Length**: 512 tokens
- **Training Time**: 0.43 hours
- **Gradient Checkpointing**: Non-reentrant (memory optimized)
## Dataset Information
**Total Samples**: 51,319
- **Training**: 41,055 samples
- **Validation**: 5,132 samples
- **Test**: 5,132 samples
- **Fake News**: 30,123 samples
- **Real News**: 21,196 samples
**Source Datasets**:
- `mrisdal/fake-news`
- `jainpooja/fake-news-detection`
- `clmentbisaillon/fake-and-real-news-dataset`
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
model_name = "Arko007/fact-check1-v1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Example prediction function
def predict_fake_news(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
prediction = torch.argmax(probabilities, dim=-1).item()
labels = {0: "REAL", 1: "FAKE"}
confidence = probabilities[0][prediction].item()
return {
"prediction": labels[prediction],
"confidence": confidence,
"probabilities": {
"REAL": probabilities[0][0].item(),
"FAKE": probabilities[0][1].item()
}
}
# Test the model
text = "Breaking: Scientists discover new planet in our solar system!"
result = predict_fake_news(text)
print(f"Prediction: {result['prediction']} ({result['confidence']:.2%} confidence)")
```
## Model Performance
This model achieves **research-grade performance** on fake news detection, with near-perfect accuracy across all metrics. The high precision and recall indicate excellent balance between catching fake news while avoiding false positives on real news.
## Limitations and Bias
- Trained primarily on English news articles
- Performance may vary on news domains not represented in training data
- May reflect biases present in the source datasets
- Designed for binary classification (fake vs real) only
## Citation
```bibtex
@misc{fake-news-deberta-2025,
author = {Arko007},
title = {Elite Fake News Detection with DeBERTa-v3-Large},
year = {2025},
publisher = {Hugging Face},
url = {[https://huggingface.co/](https://huggingface.co/)Arko007/fact-check1-v1}
}
```
## License
MIT License - Feel free to use this model for research and applications.
---
**Built with ❤️ using A100 80GB + DeBERTa-v3-Large**
|