AtharAbbas993 commited on
Commit
cf65431
Β·
verified Β·
1 Parent(s): 5e17444

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - facial-emotion-recognition
5
+ - computer-vision
6
+ - tensorflow
7
+ - keras
8
+ license: apache-2.0
9
+ ---
10
+
11
+ # Facial Emotion Detection Model
12
+
13
+ A lightweight deep learning model that classifies facial expressions into 7 emotion categories.
14
+
15
+ ## Model Details
16
+
17
+ - **Model type:** Image Classification
18
+ - **Architecture:** ResNet50-based
19
+ - **Input:** 224x224 RGB images
20
+ - **Output:** 7 emotion classes
21
+ - **Accuracy:** 85.60%
22
+
23
+ ## Emotion Classes
24
+
25
+ - 😠 Angry
26
+ - 🀒 Disgust
27
+ - 😨 Fear
28
+ - 😊 Happy
29
+ - 😐 Neutral
30
+ - 😒 Sad
31
+ - 😲 Surprise
32
+
33
+ ## Quick Start
34
+
35
+ ```python
36
+ from tensorflow.keras.models import load_model
37
+ from PIL import Image
38
+ import numpy as np
39
+
40
+ # Load model
41
+ model = load_model('Facial_Emotion_Detection_Model.h5')
42
+
43
+ # Preprocess image
44
+ img = Image.open('face.jpg').convert('RGB').resize((224, 224))
45
+ x = np.array(img) / 255.0
46
+ x = np.expand_dims(x, axis=0)
47
+
48
+ # Predict
49
+ predictions = model.predict(x)
50
+ emotion = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise'][np.argmax(predictions)]
51
+ confidence = np.max(predictions)
52
+
53
+ print(f"Emotion: {emotion} ({confidence:.2%})")
54
+ Usage
55
+ Ideal for:
56
+
57
+ Emotion analysis applications
58
+
59
+ Human-computer interaction
60
+
61
+ Customer sentiment analysis
62
+
63
+ Research projects
64
+
65
+ Limitations
66
+ Best with frontal face images
67
+
68
+ Performance varies with image quality
69
+
70
+ Cultural differences may affect accuracy
71
+
72
+ License: Apache 2.0