--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: result-colab-with_tokenizer results: [] --- # result-colab-with_tokenizer This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3390 - Accuracy: 0.8945 - Precision: 0.8847 - Recall: 0.8927 - F1: 0.8869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.2288 | 1.0 | 48 | 0.9276 | 0.6789 | 0.5929 | 0.6138 | 0.5825 | | 0.7686 | 2.0 | 96 | 0.5879 | 0.7661 | 0.7354 | 0.7159 | 0.7019 | | 0.5665 | 3.0 | 144 | 0.4706 | 0.8440 | 0.8498 | 0.8238 | 0.8281 | | 0.4813 | 4.0 | 192 | 0.4045 | 0.8578 | 0.8514 | 0.8329 | 0.8354 | | 0.3716 | 5.0 | 240 | 0.3770 | 0.8624 | 0.8566 | 0.8398 | 0.8426 | | 0.3535 | 6.0 | 288 | 0.3538 | 0.8853 | 0.8760 | 0.8664 | 0.8690 | | 0.2511 | 7.0 | 336 | 0.3626 | 0.8716 | 0.8631 | 0.8573 | 0.8591 | | 0.2826 | 8.0 | 384 | 0.3490 | 0.8899 | 0.8809 | 0.8886 | 0.8823 | | 0.2295 | 9.0 | 432 | 0.3372 | 0.8807 | 0.8697 | 0.8720 | 0.8705 | | 0.181 | 10.0 | 480 | 0.3410 | 0.8853 | 0.8743 | 0.8789 | 0.8757 | | 0.178 | 11.0 | 528 | 0.3416 | 0.8945 | 0.8847 | 0.8927 | 0.8869 | | 0.208 | 12.0 | 576 | 0.3390 | 0.8945 | 0.8847 | 0.8927 | 0.8869 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1