File size: 195,640 Bytes
695fbf0 e69f3b7 695fbf0 ccadebd 695fbf0 dc64aaa 695fbf0 bb62070 695fbf0 0503191 9068525 bb62070 0503191 9068525 bb62070 9068525 bb62070 9068525 bb62070 695fbf0 e69f3b7 695fbf0 9068525 695fbf0 ccadebd 695fbf0 ccadebd 695fbf0 7dd5fc1 e42ce45 0503191 695fbf0 478379a 695fbf0 0503191 695fbf0 c86b5e0 695fbf0 e42ce45 695fbf0 e42ce45 c86b5e0 695fbf0 e42ce45 695fbf0 c86b5e0 695fbf0 e42ce45 695fbf0 ccadebd 695fbf0 dc64aaa 695fbf0 478379a 695fbf0 ccadebd 695fbf0 92ca926 bb62070 695fbf0 92ca926 dc64aaa 695fbf0 4bfcccd 0f11662 695fbf0 bb62070 695fbf0 7dd5fc1 e42ce45 0503191 e42ce45 df38cb0 695fbf0 e69f3b7 0503191 dc64aaa 695fbf0 4bfcccd 695fbf0 0f11662 dc64aaa 695fbf0 df38cb0 c86b5e0 695fbf0 ccadebd 695fbf0 ccadebd 695fbf0 ccadebd 695fbf0 bb62070 695fbf0 478379a 7dd5fc1 e42ce45 0503191 478379a dc64aaa 695fbf0 dc64aaa 695fbf0 478379a 695fbf0 bb62070 695fbf0 0503191 695fbf0 0503191 695fbf0 ccadebd 695fbf0 ccadebd 695fbf0 ccadebd 695fbf0 bb62070 695fbf0 df38cb0 478379a 695fbf0 0503191 695fbf0 0503191 695fbf0 0503191 695fbf0 bb62070 695fbf0 e69f3b7 695fbf0 dc64aaa 695fbf0 e69f3b7 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa bb62070 dc64aaa df38cb0 695fbf0 ccadebd 695fbf0 df38cb0 bb62070 695fbf0 bb62070 695fbf0 0503191 dc64aaa 695fbf0 bb62070 695fbf0 df38cb0 695fbf0 478379a 695fbf0 dc64aaa 695fbf0 bb62070 92ca926 bb62070 92ca926 bb62070 695fbf0 0f11662 695fbf0 dc64aaa 695fbf0 0f11662 695fbf0 0f11662 695fbf0 dc64aaa 695fbf0 dc64aaa 695fbf0 0503191 dc64aaa 695fbf0 0f11662 695fbf0 bb62070 dc64aaa 695fbf0 dc64aaa 695fbf0 dc64aaa 0503191 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 |
"""CADE 2.5: refined adaptive enhancer with reference clean and accumulation override.
"""
from __future__ import annotations # moved/renamed module: mg_cade25
import torch
import os
import numpy as np
import torch.nn.functional as F
import traceback
import nodes
import comfy.model_management as model_management
from ..hard.mg_adaptive import AdaptiveSamplerHelper
from ..hard.mg_zesmart_sampler_v1_1 import _build_hybrid_sigmas
import comfy.sample as _sample
import comfy.samplers as _samplers
import comfy.utils as _utils
from ..hard.mg_upscale_module import MagicUpscaleModule, clear_gpu_and_ram_cache
from ..hard.mg_controlfusion import _build_depth_map as _cf_build_depth_map
from ..hard.mg_ids import IntelligentDetailStabilizer
from .. import mg_sagpu_attention as sa_patch
from .preset_loader import get as load_preset
from ..hard.mg_controlfusion import _pyracanny as _cf_pyracanny, _build_depth_map as _cf_build_depth
# FDG/NAG experimental paths removed for now; keeping code lean
_ONNX_RT = None
_ONNX_SESS = {} # name -> onnxruntime.InferenceSession
_ONNX_WARNED = False
_ONNX_DEBUG = False
_ONNX_FORCE_CPU = True # pin ONNX to CPU for deterministic behavior
_ONNX_COUNT_DEBUG = True # print detected counts (faces/hands/persons) when True (temporarily forced ON)
# Lazy CLIPSeg cache
_CLIPSEG_MODEL = None
_CLIPSEG_PROC = None
_CLIPSEG_DEV = "cpu"
_CLIPSEG_FORCE_CPU = True # pin CLIPSeg to CPU to avoid device drift
# ONNX keypoints (wholebody/pose) parsing toggles (set by UI at runtime)
_ONNX_KPTS_ENABLE = False
_ONNX_KPTS_SIGMA = 2.5
_ONNX_KPTS_GAIN = 1.5
_ONNX_KPTS_CONF = 0.20
# Per-iteration spatial guidance mask (B,1,H,W) in [0,1]; used by cfg_func when enabled
CURRENT_ONNX_MASK_BCHW = None
# --- AQClip-Lite: adaptive soft quantile clipping in latent space (tile overlap) ---
@torch.no_grad()
def _aqclip_lite(latent_bchw: torch.Tensor,
tile: int = 32,
stride: int = 16,
alpha: float = 2.0,
ema_state: dict | None = None,
ema_beta: float = 0.8) -> tuple[torch.Tensor, dict]:
try:
z = latent_bchw
B, C, H, W = z.shape
dev, dt = z.device, z.dtype
ksize = max(8, min(int(tile), min(H, W)))
kstride = max(1, min(int(stride), ksize))
# Confidence proxy: gradient magnitude on channel-mean latent
zm = z.mean(dim=1, keepdim=True)
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=dev, dtype=dt).view(1, 1, 3, 3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=dev, dtype=dt).view(1, 1, 3, 3)
gx = F.conv2d(zm, kx, padding=1)
gy = F.conv2d(zm, ky, padding=1)
gmag = torch.sqrt(gx * gx + gy * gy)
gpool = F.avg_pool2d(gmag, kernel_size=ksize, stride=kstride)
gmax = gpool.amax(dim=(2, 3), keepdim=True).clamp_min(1e-6)
Hn = (gpool / gmax).squeeze(1) # B,h',w'
L = Hn.shape[1] * Hn.shape[2]
Hn = Hn.reshape(B, L)
# Map confidence -> quantiles
ql = 0.5 * (Hn ** 2)
qh = 1.0 - 0.5 * ((1.0 - Hn) ** 2)
# Per-tile mean/std
unf = F.unfold(z, kernel_size=ksize, stride=kstride) # B, C*ksize*ksize, L
M = unf.shape[1]
mu = unf.mean(dim=1).to(torch.float32) # B,L
var = (unf.to(torch.float32) - mu.unsqueeze(1)).pow(2).mean(dim=1)
sigma = (var + 1e-12).sqrt()
# Normal inverse approximation: ndtri(q) = sqrt(2)*erfinv(2q-1)
def _ndtri(q: torch.Tensor) -> torch.Tensor:
return (2.0 ** 0.5) * torch.special.erfinv(q.mul(2.0).sub(1.0).clamp(-0.999999, 0.999999))
k_neg = _ndtri(ql).abs()
k_pos = _ndtri(qh).abs()
lo = mu - k_neg * sigma
hi = mu + k_pos * sigma
# EMA smooth
if ema_state is None:
ema_state = {}
b = float(max(0.0, min(0.999, ema_beta)))
if 'lo' in ema_state and 'hi' in ema_state and ema_state['lo'].shape == lo.shape:
lo = b * ema_state['lo'] + (1.0 - b) * lo
hi = b * ema_state['hi'] + (1.0 - b) * hi
ema_state['lo'] = lo.detach()
ema_state['hi'] = hi.detach()
# Soft tanh clip (vectorized in unfold domain)
mid = (lo + hi) * 0.5
half = (hi - lo) * 0.5
half = half.clamp_min(1e-6)
y = (unf.to(torch.float32) - mid.unsqueeze(1)) / half.unsqueeze(1)
y = torch.tanh(float(alpha) * y)
unf_clipped = mid.unsqueeze(1) + half.unsqueeze(1) * y
unf_clipped = unf_clipped.to(dt)
out = F.fold(unf_clipped, output_size=(H, W), kernel_size=ksize, stride=kstride)
ones = torch.ones((B, M, L), device=dev, dtype=dt)
w = F.fold(ones, output_size=(H, W), kernel_size=ksize, stride=kstride).clamp_min(1e-6)
out = out / w
return out, ema_state
except Exception:
return latent_bchw, (ema_state or {})
def _try_init_onnx(models_dir: str):
"""Initialize onnxruntime and load all .onnx models in models_dir.
We prefer GPU providers when available, but gracefully fall back to CPU.
"""
global _ONNX_RT, _ONNX_SESS, _ONNX_WARNED
import os
if _ONNX_RT is None:
try:
import onnxruntime as ort
_ONNX_RT = ort
except Exception:
if not _ONNX_WARNED:
print("[CADE2.5][ONNX] onnxruntime not available, skipping ONNX detectors.")
_ONNX_WARNED = True
return False
# Build provider preference list
try:
avail = set(_ONNX_RT.get_available_providers())
except Exception:
avail = set()
pref = []
if _ONNX_FORCE_CPU:
pref = ["CPUExecutionProvider"]
else:
for p in ("CUDAExecutionProvider", "DmlExecutionProvider", "CPUExecutionProvider"):
if p in avail or p == "CPUExecutionProvider":
pref.append(p)
if _ONNX_DEBUG:
try:
print(f"[CADE2.5][ONNX] Available providers: {sorted(list(avail))}")
print(f"[CADE2.5][ONNX] Provider preference: {pref}")
except Exception:
pass
# Load any .onnx in models_dir
try:
for fname in os.listdir(models_dir):
if not fname.lower().endswith('.onnx'):
continue
if fname in _ONNX_SESS:
continue
full = os.path.join(models_dir, fname)
try:
_ONNX_SESS[fname] = _ONNX_RT.InferenceSession(full, providers=pref)
if _ONNX_DEBUG:
try:
print(f"[CADE2.5][ONNX] Loaded model: {fname}")
except Exception:
pass
except Exception as e:
if not _ONNX_WARNED:
print(f"[CADE2.5][ONNX] failed to load {fname}: {e}")
except Exception as e:
if not _ONNX_WARNED:
print(f"[CADE2.5][ONNX] cannot list models in {models_dir}: {e}")
if not _ONNX_SESS and not _ONNX_WARNED:
print("[CADE2.5][ONNX] No ONNX models found in", models_dir)
_ONNX_WARNED = True
return len(_ONNX_SESS) > 0
def _try_init_clipseg():
"""Lazy-load CLIPSeg processor + model and choose device.
Returns True on success.
"""
global _CLIPSEG_MODEL, _CLIPSEG_PROC, _CLIPSEG_DEV
if (_CLIPSEG_MODEL is not None) and (_CLIPSEG_PROC is not None):
return True
try:
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation # type: ignore
except Exception:
if not globals().get("_CLIPSEG_WARNED", False):
print("[CADE2.5][CLIPSeg] transformers not available; CLIPSeg disabled.")
globals()["_CLIPSEG_WARNED"] = True
return False
try:
_CLIPSEG_PROC = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
_CLIPSEG_MODEL = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
if _CLIPSEG_FORCE_CPU:
_CLIPSEG_DEV = "cpu"
else:
_CLIPSEG_DEV = "cuda" if torch.cuda.is_available() else "cpu"
_CLIPSEG_MODEL = _CLIPSEG_MODEL.to(_CLIPSEG_DEV)
_CLIPSEG_MODEL.eval()
return True
except Exception as e:
print(f"[CADE2.5][CLIPSeg] failed to load model: {e}")
return False
def _clipseg_build_mask(image_bhwc: torch.Tensor,
text: str,
preview: int = 224,
threshold: float = 0.4,
blur: float = 7.0,
dilate: int = 4,
gain: float = 1.0,
ref_embed: torch.Tensor | None = None,
clip_vision=None,
ref_threshold: float = 0.03) -> torch.Tensor | None:
"""Return BHWC single-channel mask [0,1] from CLIPSeg.
- Uses cached CLIPSeg model; gracefully returns None on failure.
- Applies optional threshold/blur/dilate and scaling gain.
- If clip_vision + ref_embed provided, gates mask by CLIP-Vision distance.
"""
if not text or not isinstance(text, str):
return None
if not _try_init_clipseg():
return None
try:
# Prepare preview image (CPU PIL)
target = int(max(16, min(1024, preview)))
img = image_bhwc.detach().to('cpu')
if img.ndim == 5:
# squeeze depth if present
if img.shape[1] == 1:
img = img[:, 0]
else:
img = img[:, 0]
B, H, W, C = img.shape
x = img[0].movedim(-1, 0).unsqueeze(0) # 1,C,H,W
x = F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False)
x = x.clamp(0, 1)
arr = (x[0].movedim(0, -1).numpy() * 255.0).astype('uint8')
from PIL import Image # lazy import
pil_img = Image.fromarray(arr)
# Run CLIPSeg
import re
prompts = [t.strip() for t in re.split(r"[\|,;\n]+", text) if t.strip()]
if not prompts:
prompts = [text.strip()]
prompts = prompts[:8]
inputs = _CLIPSEG_PROC(text=prompts, images=[pil_img] * len(prompts), return_tensors="pt")
inputs = {k: v.to(_CLIPSEG_DEV) for k, v in inputs.items()}
with torch.inference_mode():
outputs = _CLIPSEG_MODEL(**inputs) # type: ignore
# logits: [N, H', W'] for N prompts
logits = outputs.logits # [N,h,w]
if logits.ndim == 2:
logits = logits.unsqueeze(0)
prob = torch.sigmoid(logits) # [N,h,w]
# Soft-OR fuse across prompts
prob = 1.0 - torch.prod(1.0 - prob.clamp(0, 1), dim=0, keepdim=True) # [1,h,w]
prob = prob.unsqueeze(1) # [1,1,h,w]
# Resize to original image size
prob = F.interpolate(prob, size=(H, W), mode='bilinear', align_corners=False)
m = prob[0, 0].to(dtype=image_bhwc.dtype, device=image_bhwc.device)
# Threshold + blur (approx)
if threshold > 0.0:
m = torch.where(m > float(threshold), m, torch.zeros_like(m))
# Gaussian blur via our depthwise helper
if blur > 0.0:
rad = int(max(1, min(7, round(blur))))
m = _gaussian_blur_nchw(m.unsqueeze(0).unsqueeze(0), sigma=float(max(0.5, blur)), radius=rad)[0, 0]
# Dilation via max-pool
if int(dilate) > 0:
k = int(dilate) * 2 + 1
p = int(dilate)
m = F.max_pool2d(m.unsqueeze(0).unsqueeze(0), kernel_size=k, stride=1, padding=p)[0, 0]
# Optional CLIP-Vision gating by reference distance
if (clip_vision is not None) and (ref_embed is not None):
try:
cur = _encode_clip_image(image_bhwc, clip_vision, target_res=224)
dist = _clip_cosine_distance(cur, ref_embed)
if dist > float(ref_threshold):
# up to +50% gain if distance exceeds the reference threshold
gate = 1.0 + min(0.5, (dist - float(ref_threshold)) * 4.0)
m = m * gate
except Exception:
pass
m = (m * float(max(0.0, gain))).clamp(0, 1)
out_mask = m.unsqueeze(0).unsqueeze(-1) # BHWC with B=1,C=1
# Best-effort release of temporaries to reduce RAM peak
try:
del inputs
except Exception:
pass
try:
del outputs
except Exception:
pass
try:
del logits
except Exception:
pass
try:
del prob
except Exception:
pass
try:
del pil_img
except Exception:
pass
try:
del arr
except Exception:
pass
try:
del x
except Exception:
pass
try:
del img
except Exception:
pass
return out_mask
except Exception as e:
if not globals().get("_CLIPSEG_WARNED", False):
print(f"[CADE2.5][CLIPSeg] mask failed: {e}")
globals()["_CLIPSEG_WARNED"] = True
return None
def _np_to_mask_tensor(np_map: np.ndarray, out_h: int, out_w: int, device, dtype):
"""Convert numpy heatmap [H,W] or [1,H,W] or [H,W,1] to BHWC torch mask with B=1 and resize to out_h,out_w."""
if np_map.ndim == 3:
np_map = np_map.reshape(np_map.shape[-2], np_map.shape[-1]) if (np_map.shape[0] == 1) else np_map.squeeze()
if np_map.ndim != 2:
return None
t = torch.from_numpy(np_map.astype(np.float32))
t = t.clamp_min(0.0)
t = t.unsqueeze(0).unsqueeze(0) # B=1,C=1,H,W
t = F.interpolate(t, size=(out_h, out_w), mode="bilinear", align_corners=False)
t = t.permute(0, 2, 3, 1).to(device=device, dtype=dtype) # B,H,W,C
return t.clamp(0, 1)
# --- Firefly/Hot-pixel remover (image space, BHWC in 0..1) ---
def _median_pool3x3_bhwc(img_bhwc: torch.Tensor) -> torch.Tensor:
B, H, W, C = img_bhwc.shape
x = img_bhwc.permute(0, 3, 1, 2) # B,C,H,W
unfold = F.unfold(x, kernel_size=3, padding=1) # B, 9*C, H*W
unfold = unfold.view(B, x.shape[1], 9, H, W) # B,C,9,H,W
med, _ = torch.median(unfold, dim=2) # B,C,H,W
return med.permute(0, 2, 3, 1) # B,H,W,C
def _despeckle_fireflies(img_bhwc: torch.Tensor,
thr: float = 0.985,
max_iso: float | None = None,
grad_gate: float = 0.25) -> torch.Tensor:
try:
dev, dt = img_bhwc.device, img_bhwc.dtype
B, H, W, C = img_bhwc.shape
# Scale-aware window
s = max(H, W) / 1024.0
k = 3 if s <= 1.1 else (5 if s <= 2.0 else 7)
pad = k // 2
# Value/Saturation from RGB (fast, no colorspace conv required)
R, G, Bc = img_bhwc[..., 0], img_bhwc[..., 1], img_bhwc[..., 2]
V = torch.maximum(R, torch.maximum(G, Bc))
m = torch.minimum(R, torch.minimum(G, Bc))
S = 1.0 - (m / (V + 1e-6))
# Dynamic bright threshold from top tail; allow manual override for very high thr
try:
q = float(torch.quantile(V.reshape(-1), 0.9995).item())
thr_eff = float(thr) if float(thr) >= 0.99 else max(float(thr), min(0.997, q))
except Exception:
thr_eff = float(thr)
v_thr = max(0.985, thr_eff)
s_thr = 0.06
cand = (V > v_thr) & (S < s_thr)
# gradient gate to protect real edges/highlights
lum = (0.2126 * R + 0.7152 * G + 0.0722 * Bc)
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=dev, dtype=dt).view(1, 1, 3, 3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=dev, dtype=dt).view(1, 1, 3, 3)
gx = F.conv2d(lum.unsqueeze(1), kx, padding=1)
gy = F.conv2d(lum.unsqueeze(1), ky, padding=1)
grad = torch.sqrt(gx * gx + gy * gy).squeeze(1)
safe_gate = float(grad_gate) * (k / 3.0) ** 0.5
cand = cand & (grad < safe_gate)
if not cand.any():
return img_bhwc
# Prefer connected components (OpenCV) to drop small bright specks
try:
import cv2
masks = []
for b in range(cand.shape[0]):
msk = cand[b].detach().to('cpu').numpy().astype('uint8') * 255
num, labels, stats, _ = cv2.connectedComponentsWithStats(msk, connectivity=8)
rem = np.zeros_like(msk, dtype='uint8')
# Size threshold grows with k
area_max = int(max(3, round((k * k) * 0.8)))
for lbl in range(1, num):
area = stats[lbl, cv2.CC_STAT_AREA]
if area <= area_max:
rem[labels == lbl] = 255
masks.append(torch.from_numpy(rem > 0))
rm = torch.stack(masks, dim=0).to(device=dev) # B,H,W (bool)
rm = rm.unsqueeze(-1) # B,H,W,1
if not rm.any():
return img_bhwc
med = _median_pool3x3_bhwc(img_bhwc)
return torch.where(rm, med, img_bhwc)
except Exception:
# Fallback: isolation via local density
dens = F.avg_pool2d(cand.float().unsqueeze(1), k, 1, pad).squeeze(1)
max_iso_eff = (2.0 / (k * k)) if (max_iso is None) else float(max_iso)
iso = cand & (dens < max_iso_eff)
if not iso.any():
return img_bhwc
med = _median_pool3x3_bhwc(img_bhwc)
return torch.where(iso.unsqueeze(-1), med, img_bhwc)
except Exception:
return img_bhwc
def _try_heatmap_from_outputs(outputs: list, preview_hw: tuple[int, int]):
"""Return [H,W] heatmap from model outputs if possible.
Supports:
- Segmentation logits/probabilities (NCHW / NHWC)
- Keypoints arrays -> gaussian disks on points
- Bounding boxes -> soft rectangles
"""
if not outputs:
return None
Ht, Wt = int(preview_hw[0]), int(preview_hw[1])
def to_float(arr):
if arr.dtype not in (np.float32, np.float64):
try:
arr = arr.astype(np.float32)
except Exception:
return None
return arr
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
# 1) Prefer any spatial heatmap first
for out in outputs:
try:
arr = np.asarray(out)
except Exception:
continue
arr = to_float(arr)
if arr is None:
continue
if arr.ndim == 4:
n, a, b, c = arr.shape
if c <= 4 and a >= 8 and b >= 8:
if c == 1:
hm = sigmoid(arr[0, :, :, 0]) if np.max(np.abs(arr)) > 1.5 else arr[0, :, :, 0]
else:
ex = np.exp(arr[0] - np.max(arr[0], axis=-1, keepdims=True))
prob = ex / np.clip(ex.sum(axis=-1, keepdims=True), 1e-6, None)
hm = 1.0 - prob[..., 0] if prob.shape[-1] > 1 else prob[..., 0]
return hm.astype(np.float32)
else:
if a == 1:
ch = arr[0, 0]
hm = sigmoid(ch) if np.max(np.abs(ch)) > 1.5 else ch
return hm.astype(np.float32)
else:
x = arr[0]
x = x - np.max(x, axis=0, keepdims=True)
ex = np.exp(x)
prob = ex / np.clip(np.sum(ex, axis=0, keepdims=True), 1e-6, None)
bg = prob[0] if prob.shape[0] > 1 else prob[0]
hm = 1.0 - bg
return hm.astype(np.float32)
if arr.ndim == 3:
if arr.shape[0] == 1 and arr.shape[1] >= 8 and arr.shape[2] >= 8:
return arr[0].astype(np.float32)
if arr.ndim == 2 and arr.shape[0] >= 8 and arr.shape[1] >= 8:
return arr.astype(np.float32)
# 2) Try keypoints and boxes
heat = np.zeros((Ht, Wt), dtype=np.float32)
def draw_gaussian(hm, cx, cy, sigma=2.5, amp=1.0):
r = max(1, int(3 * sigma))
xs = np.arange(-r, r + 1, dtype=np.float32)
ys = np.arange(-r, r + 1, dtype=np.float32)
gx = np.exp(-(xs**2) / (2 * sigma * sigma))
gy = np.exp(-(ys**2) / (2 * sigma * sigma))
g = np.outer(gy, gx) * float(amp)
x0 = int(round(cx)) - r
y0 = int(round(cy)) - r
x1 = x0 + g.shape[1]
y1 = y0 + g.shape[0]
if x1 < 0 or y1 < 0 or x0 >= Wt or y0 >= Ht:
return
xs0 = max(0, x0)
ys0 = max(0, y0)
xs1 = min(Wt, x1)
ys1 = min(Ht, y1)
gx0 = xs0 - x0
gy0 = ys0 - y0
gx1 = gx0 + (xs1 - xs0)
gy1 = gy0 + (ys1 - ys0)
hm[ys0:ys1, xs0:xs1] = np.maximum(hm[ys0:ys1, xs0:xs1], g[gy0:gy1, gx0:gx1])
def draw_soft_rect(hm, x0, y0, x1, y1, edge=3.0):
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
if x1 <= 0 or y1 <= 0 or x0 >= Wt or y0 >= Ht:
return
xs0 = max(0, min(x0, x1))
ys0 = max(0, min(y0, y1))
xs1 = min(Wt, max(x0, x1))
ys1 = min(Ht, max(y0, y1))
if xs1 - xs0 <= 0 or ys1 - ys0 <= 0:
return
hm[ys0:ys1, xs0:xs1] = np.maximum(hm[ys0:ys1, xs0:xs1], 1.0)
# feather edges with simple blur-like falloff
if edge > 0:
rad = int(edge)
if rad > 0:
# quick separable triangle filter
line = np.linspace(0, 1, rad + 1, dtype=np.float32)[1:]
for d in range(1, rad + 1):
w = line[d - 1]
if ys0 - d >= 0:
hm[ys0 - d:ys0, xs0:xs1] = np.maximum(hm[ys0 - d:ys0, xs0:xs1], w)
if ys1 + d <= Ht:
hm[ys1:ys1 + d, xs0:xs1] = np.maximum(hm[ys1:ys1 + d, xs0:xs1], w)
if xs0 - d >= 0:
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs0 - d:xs0] = np.maximum(
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs0 - d:xs0], w)
if xs1 + d <= Wt:
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs1:xs1 + d] = np.maximum(
hm[max(0, ys0 - d):min(Ht, ys1 + d), xs1:xs1 + d], w)
# Inspect outputs to find plausible keypoints/boxes
for out in outputs:
try:
arr = np.asarray(out)
except Exception:
continue
arr = to_float(arr)
if arr is None:
continue
a = arr
# Squeeze batch dims like [1,N,4] -> [N,4]
while a.ndim > 2 and a.shape[0] == 1:
a = np.squeeze(a, axis=0)
# Keypoints: [N,2] or [N,3] or [K, N, 2/3] (relax N limit; subsample if huge)
if a.ndim == 2 and a.shape[-1] in (2, 3):
pts = a
elif a.ndim == 3 and a.shape[-1] in (2, 3):
pts = a.reshape(-1, a.shape[-1])
else:
pts = None
if pts is not None:
# Coordinates range guess: if max>1.2 -> absolute; else normalized
maxv = float(np.nanmax(np.abs(pts[:, :2]))) if pts.size else 0.0
for px, py, *rest in pts:
if np.isnan(px) or np.isnan(py):
continue
if maxv <= 1.2:
cx = float(px) * (Wt - 1)
cy = float(py) * (Ht - 1)
else:
cx = float(px)
cy = float(py)
base_sig = max(1.5, min(Ht, Wt) / 128.0)
if _ONNX_KPTS_ENABLE:
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN))
else:
draw_gaussian(heat, cx, cy, sigma=base_sig)
continue
# Wholebody-style packed keypoints: [N, K*3] with triples (x,y,conf)
if _ONNX_KPTS_ENABLE and a.ndim == 2 and a.shape[-1] >= 6 and (a.shape[-1] % 3) == 0:
K = a.shape[-1] // 3
if K >= 5 and K <= 256:
# Guess coordinate range once
with np.errstate(invalid='ignore'):
maxv = float(np.nanmax(np.abs(a[:, :2]))) if a.size else 0.0
for i in range(a.shape[0]):
row = a[i]
kp = row.reshape(K, 3)
for (px, py, pc) in kp:
if np.isnan(px) or np.isnan(py):
continue
if np.isfinite(pc) and pc < float(_ONNX_KPTS_CONF):
continue
if maxv <= 1.2:
cx = float(px) * (Wt - 1)
cy = float(py) * (Ht - 1)
else:
cx = float(px)
cy = float(py)
base_sig = max(1.0, min(Ht, Wt) / 128.0)
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN))
continue
# 1D edge-case: single detection row (post-processed model output)
if _ONNX_KPTS_ENABLE and a.ndim == 1 and a.shape[0] >= 6:
D = a.shape[0]
parsed = False
# try [xyxy, conf, cls, kpts] or [xyxy, conf, kpts] or [xyxy, kpts] or [kpts]
for offset in (6, 5, 4, 0):
t = D - offset
if t >= 6 and (t % 3) == 0:
k = t // 3
kp = a[offset:offset + 3 * k].reshape(k, 3)
parsed = True
break
if parsed:
with np.errstate(invalid='ignore'):
maxv = float(np.nanmax(np.abs(kp[:, :2]))) if kp.size else 0.0
for (px, py, pc) in kp:
if np.isnan(px) or np.isnan(py):
continue
if np.isfinite(pc) and pc < float(_ONNX_KPTS_CONF):
continue
if maxv <= 1.2:
cx = float(px) * (Wt - 1)
cy = float(py) * (Ht - 1)
else:
cx = float(px)
cy = float(py)
base_sig = max(1.0, min(Ht, Wt) / 128.0)
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN))
continue
# Boxes: [N,4+] (x0,y0,x1,y1) or [N, (x,y,w,h, [conf, ...])]; relax N limit (handle YOLO-style outputs)
if a.ndim == 2 and a.shape[-1] >= 4:
boxes = a
elif a.ndim == 3 and a.shape[-1] >= 4:
# choose the smallest first two dims as N
if a.shape[0] == 1:
boxes = a.reshape(-1, a.shape[-1])
else:
boxes = a.reshape(-1, a.shape[-1])
else:
boxes = None
if boxes is not None:
# Optional score gating (try to find a confidence column)
score = None
if boxes.shape[-1] >= 5:
score = boxes[:, 4]
# If trailing columns look like probabilities in [0,1], mix the best one; if they look like class ids, ignore
if boxes.shape[-1] > 5:
try:
tail = boxes[:, 5:]
tmax = np.max(tail, axis=-1)
# Heuristic: treat as probs if within [0,1] and not integer-like; else assume class ids
maybe_prob = np.all((tmax >= 0.0) & (tmax <= 1.0))
frac = np.abs(tmax - np.round(tmax))
maybe_classid = (np.mean(frac < 1e-6) > 0.9) and (np.max(tmax) >= 1.0)
if maybe_prob and not maybe_classid:
score = score * tmax
except Exception:
pass
# Keep top-K by score if available
if score is not None:
try:
order = np.argsort(-score)
keep = order[: min(12, order.shape[0])]
boxes = boxes[keep]
score = score[keep]
except Exception:
score = None
xy = boxes[:, :4]
maxv = float(np.nanmax(np.abs(xy))) if xy.size else 0.0
if maxv <= 1.2:
x0 = xy[:, 0] * (Wt - 1)
y0 = xy[:, 1] * (Ht - 1)
x1 = xy[:, 2] * (Wt - 1)
y1 = xy[:, 3] * (Ht - 1)
else:
x0, y0, x1, y1 = xy[:, 0], xy[:, 1], xy[:, 2], xy[:, 3]
# Heuristic: if many boxes are inverted, treat as [x,y,w,h]
invalid = np.sum((x1 <= x0) | (y1 <= y0))
if invalid > 0.5 * x0.shape[0]:
x, y, w, h = x0, y0, x1, y1
x0 = x - w * 0.5
y0 = y - h * 0.5
x1 = x + w * 0.5
y1 = y + h * 0.5
for i in range(x0.shape[0]):
if score is not None and np.isfinite(score[i]) and score[i] < 0.05:
continue
draw_soft_rect(heat, x0[i], y0[i], x1[i], y1[i], edge=3.0)
# Embedded keypoints in YOLO-style rows: try to parse trailing triples (x,y,conf)
if _ONNX_KPTS_ENABLE and boxes.shape[-1] > 6:
D = boxes.shape[-1]
for i in range(boxes.shape[0]):
row = boxes[i]
parsed = False
# try [xyxy, conf, cls, kpts] or [xyxy, conf, kpts] or [xyxy, kpts]
for offset in (6, 5, 4):
t = D - offset
if t >= 6 and t % 3 == 0:
k = t // 3
kp = row[offset:offset + 3 * k].reshape(k, 3)
parsed = True
break
if not parsed:
continue
for (px, py, pc) in kp:
if np.isnan(px) or np.isnan(py):
continue
if pc < float(_ONNX_KPTS_CONF):
continue
if maxv <= 1.2:
cx = float(px) * (Wt - 1)
cy = float(py) * (Ht - 1)
else:
cx = float(px)
cy = float(py)
base_sig = max(1.0, min(Ht, Wt) / 128.0)
draw_gaussian(heat, cx, cy, sigma=base_sig * float(_ONNX_KPTS_SIGMA), amp=float(_ONNX_KPTS_GAIN))
if heat.max() > 0:
heat = np.clip(heat, 0.0, 1.0)
return heat
return None
def _onnx_build_mask(image_bhwc: torch.Tensor, preview: int, sensitivity: float, models_dir: str, anomaly_gain: float = 1.0) -> torch.Tensor:
"""Return BHWC single-channel mask [0,1] fused from all auto-detected ONNX models.
- Auto-loads any .onnx in models_dir.
- Heuristically extracts spatial heatmaps; non-spatial outputs are ignored.
- Uses soft-OR fusion across models. Models whose filename contains 'anomaly' are scaled by anomaly_gain.
"""
if not _try_init_onnx(models_dir):
# Explicit hint when debugging counts
try:
if globals().get("_ONNX_COUNT_DEBUG", False):
print("[CADE2.5][ONNX] inactive: onnxruntime not available or init failed")
except Exception:
pass
return torch.zeros((image_bhwc.shape[0], image_bhwc.shape[1], image_bhwc.shape[2], 1), device=image_bhwc.device, dtype=image_bhwc.dtype)
if not _ONNX_SESS:
# Explicit hint when debugging counts
try:
if globals().get("_ONNX_COUNT_DEBUG", False):
print(f"[CADE2.5][ONNX] inactive: no .onnx models loaded from {models_dir}")
except Exception:
pass
return torch.zeros((image_bhwc.shape[0], image_bhwc.shape[1], image_bhwc.shape[2], 1), device=image_bhwc.device, dtype=image_bhwc.dtype)
# One-time session summary when counting is enabled
if globals().get("_ONNX_COUNT_DEBUG", False):
try:
names = list(_ONNX_SESS.keys())
short = names[:3]
more = "..." if len(names) > 3 else ""
print(f"[CADE2.5][ONNX] sessions={len(names)} models={short}{more}")
except Exception:
pass
B, H, W, C = image_bhwc.shape
device = image_bhwc.device
dtype = image_bhwc.dtype
# Process per-batch image
masks = []
img_cpu = image_bhwc.detach().to('cpu')
for b in range(B):
masks_b = []
counts_b: dict[str, int] = {}
if globals().get("_ONNX_COUNT_DEBUG", False):
try:
print(f"[CADE2.5][ONNX] build mask image[{b}] preview={int(max(16, min(1024, preview)))}")
except Exception:
pass
# Prepare base BCHW tensor and default preview size; per-model resize comes later
target = int(max(16, min(1024, preview)))
xb = img_cpu[b].movedim(-1, 0).unsqueeze(0) # 1,C,H,W
if _ONNX_DEBUG:
try:
print(f"[CADE2.5][ONNX] Build mask for image[{b}] -> preview {target}x{target}")
except Exception:
pass
for name, sess in list(_ONNX_SESS.items()):
try:
inputs = sess.get_inputs()
if not inputs:
continue
in_name = inputs[0].name
in_shape = inputs[0].shape if hasattr(inputs[0], 'shape') else None
# Choose layout automatically based on the presence of channel dim=3
if isinstance(in_shape, (list, tuple)) and len(in_shape) == 4:
dim_vals = []
for d in in_shape:
try:
dim_vals.append(int(d))
except Exception:
dim_vals.append(-1)
if dim_vals[-1] == 3:
layout = "NHWC"
else:
layout = "NCHW"
else:
layout = "NCHW?"
if _ONNX_DEBUG:
try:
print(f"[CADE2.5][ONNX] Model '{name}' in_shape={in_shape} layout={layout}")
except Exception:
pass
# Build per-model sized variants (respect fixed input shapes when provided)
th, tw = target, target
try:
if isinstance(in_shape, (list, tuple)) and len(in_shape) == 4:
dd = []
for d in in_shape:
try:
dd.append(int(d))
except Exception:
dd.append(-1)
if layout == "NCHW" and dd[2] > 8 and dd[3] > 8:
th, tw = int(dd[2]), int(dd[3])
if layout.startswith("NHWC") and dd[1] > 8 and dd[2] > 8:
th, tw = int(dd[1]), int(dd[2])
except Exception:
th, tw = target, target
x_stretch_m = F.interpolate(xb, size=(th, tw), mode='bilinear', align_corners=False).clamp(0, 1)
if th == tw:
x_letter_m = _letterbox_nchw(xb, th).clamp(0, 1)
else:
sq = max(th, tw)
x_letter_sq = _letterbox_nchw(xb, sq).clamp(0, 1)
x_letter_m = F.interpolate(x_letter_sq, size=(th, tw), mode='bilinear', align_corners=False).clamp(0, 1)
variants = [
("stretch-RGB", x_stretch_m),
("letterbox-RGB", x_letter_m),
("stretch-BGR", x_stretch_m[:, [2, 1, 0], :, :]),
("letterbox-BGR", x_letter_m[:, [2, 1, 0], :, :]),
]
# Try multiple input variants and scales
hm = None
chosen = None
for vname, vx in variants:
if layout.startswith("NHWC"):
xin = vx.permute(0, 2, 3, 1)
else:
xin = vx
for scale in (1.0, 255.0):
inp = (xin * float(scale)).numpy().astype(np.float32)
feed = {in_name: inp}
outs = sess.run(None, feed)
if _ONNX_DEBUG:
try:
shapes = []
for o in outs:
try:
shapes.append(tuple(np.asarray(o).shape))
except Exception:
shapes.append("?")
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale} -> outs shapes {shapes}")
except Exception:
pass
hm = _try_heatmap_from_outputs(outs, (target, target))
if _ONNX_DEBUG:
try:
if hm is None:
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale}: no spatial heatmap detected")
else:
print(f"[CADE2.5][ONNX] '{name}' {vname} scale={scale}: heat stats min={np.min(hm):.4f} max={np.max(hm):.4f} mean={np.mean(hm):.4f}")
except Exception:
pass
if hm is not None and np.max(hm) > 0:
chosen = (vname, scale)
break
if hm is not None and np.max(hm) > 0:
break
if hm is None:
continue
# Scale by sensitivity and optional anomaly gain
gain = float(max(0.0, sensitivity))
if 'anomaly' in name.lower():
gain *= float(max(0.0, anomaly_gain))
hm = np.clip(hm * gain, 0.0, 1.0)
# Heuristic rejection of stripe artifacts (horizontal/vertical banding)
try:
rm = np.mean(hm, axis=1) # row means (H)
cm = np.mean(hm, axis=0) # col means (W)
rstd = float(np.std(rm))
cstd = float(np.std(cm))
zig_r = float(np.mean(np.abs(np.diff(rm))))
zig_c = float(np.mean(np.abs(np.diff(cm))))
horiz_bands = (rstd > 10.0 * max(cstd, 1e-6)) and (zig_r > 0.02)
vert_bands = (cstd > 10.0 * max(rstd, 1e-6)) and (zig_c > 0.02)
if horiz_bands or vert_bands:
if _ONNX_DEBUG:
print(f"[CADE2.5][ONNX] '{name}' rejected as stripe artifact (rstd={rstd:.4f} cstd={cstd:.4f} zig_r={zig_r:.4f} zig_c={zig_c:.4f})")
hm = None
except Exception:
pass
tmask = _np_to_mask_tensor(hm, H, W, device, dtype)
if tmask is not None:
masks_b.append(tmask)
# Optional counting for debugging: derive counts from raw outputs if possible
try:
if globals().get("_ONNX_COUNT_DEBUG", False):
lower = name.lower()
is_face = ("face" in lower)
is_hand = ("hand" in lower)
is_pose = any(w in lower for w in ["wholebody", "pose", "person", "body"]) and not (is_face or is_hand)
boxes_cnt = 0
persons_cnt = 0
wrists_cnt = 0
try:
for outx in outs:
arr0 = np.asarray(outx)
if arr0 is None:
continue
a = arr0.astype(np.float32, copy=False)
while a.ndim > 2 and a.shape[0] == 1:
try:
a = np.squeeze(a, axis=0)
except Exception:
break
# Face/Hand: count only plausible (N,D) detection tables, not spatial maps/grids
if (is_face or is_hand) and a.ndim == 2:
N, D = a.shape
if D >= 4 and D <= 64 and N <= 512 and not (N >= 32 and D >= 32):
n = N
# Try to locate a confidence column
conf = None
if D >= 5:
c = a[:, 4]
if np.all(np.isfinite(c)) and 0.0 <= float(np.nanmin(c)) and float(np.nanmax(c)) <= 1.0:
conf = c
if conf is None:
c = a[:, -1]
if np.all(np.isfinite(c)) and 0.0 <= float(np.nanmin(c)) and float(np.nanmax(c)) <= 1.0:
conf = c
if conf is not None:
n = int(np.sum(conf >= 0.25))
boxes_cnt = max(boxes_cnt, int(n))
# Pose: prefer keypoints formats only
if is_pose:
# Packed per row [N, K*3]
if a.ndim == 2 and a.shape[-1] >= 6 and (a.shape[-1] % 3) == 0:
persons_cnt = max(persons_cnt, int(a.shape[0]))
try:
K = a.shape[-1] // 3
if K >= 11:
lw = a[:, 9*3 + 2]
rw = a[:, 10*3 + 2]
wrists_cnt = max(wrists_cnt, int(np.sum(lw >= 0.2) + np.sum(rw >= 0.2)))
except Exception:
pass
# [N,K,2/3]
if a.ndim == 3 and a.shape[-1] in (2, 3):
persons_cnt = max(persons_cnt, int(a.shape[0]))
try:
if a.shape[1] >= 11 and a.shape[-1] == 3:
lw = a[:, 9, 2]
rw = a[:, 10, 2]
wrists_cnt = max(wrists_cnt, int(np.sum(lw >= 0.2) + np.sum(rw >= 0.2)))
except Exception:
pass
except Exception:
pass
# Map to categories by model name using derived counts
if is_face:
if boxes_cnt > 0:
counts_b["faces"] = counts_b.get("faces", 0) + boxes_cnt
elif is_hand:
if boxes_cnt > 0:
counts_b["hands"] = counts_b.get("hands", 0) + boxes_cnt
elif is_pose:
if persons_cnt > 0:
counts_b["persons"] = counts_b.get("persons", 0) + persons_cnt
# Fallback hands from wrists or 2 per person
if wrists_cnt > 0:
counts_b["hands"] = counts_b.get("hands", 0) + wrists_cnt
elif persons_cnt > 0:
counts_b["hands"] = counts_b.get("hands", 0) + (2 * persons_cnt)
except Exception:
pass
if _ONNX_DEBUG:
try:
area = float(tmask.movedim(-1,1).mean().item())
if chosen is not None:
vname, scale = chosen
print(f"[CADE2.5][ONNX] '{name}' via {vname} x{scale} area={area:.4f}")
else:
print(f"[CADE2.5][ONNX] '{name}' contribution area={area:.4f}")
except Exception:
pass
except Exception:
# Ignore failing models
continue
if not masks_b:
masks.append(torch.zeros((1, H, W, 1), device=device, dtype=dtype))
if _ONNX_DEBUG or globals().get("_ONNX_COUNT_DEBUG", False):
try:
print(f"[CADE2.5][ONNX] Detected (image[{b}]): none (no contributing models)")
except Exception:
pass
else:
# Soft-OR fusion: 1 - prod(1 - m)
stack = torch.stack([masks_b[i] for i in range(len(masks_b))], dim=0) # M,1,H,W,1? actually B dims kept as 1
fused = 1.0 - torch.prod(1.0 - stack.clamp(0, 1), dim=0)
# Light smoothing via bilinear down/up (anti alias)
ch = fused.permute(0, 3, 1, 2) # B=1,C=1,H,W
dd = F.interpolate(ch, scale_factor=0.5, mode='bilinear', align_corners=False, recompute_scale_factor=False)
uu = F.interpolate(dd, size=(H, W), mode='bilinear', align_corners=False)
fused = uu.permute(0, 2, 3, 1).clamp(0, 1)
if _ONNX_DEBUG or globals().get("_ONNX_COUNT_DEBUG", False):
try:
area = float(fused.movedim(-1,1).mean().item())
if _ONNX_DEBUG:
print(f"[CADE2.5][ONNX] Fused area (image[{b}])={area:.4f}")
# Print per-image counts if requested
if globals().get("_ONNX_COUNT_DEBUG", False):
if counts_b:
faces = counts_b.get("faces", 0)
hands = counts_b.get("hands", 0)
persons = counts_b.get("persons", 0)
print(f"[CADE2.5][ONNX] Detected (image[{b}]): faces={faces} hands={hands} persons={persons}")
else:
print(f"[CADE2.5][ONNX] Detected (image[{b}]): counts unavailable (no categories or cv2 missing), area={area:.4f}")
except Exception:
pass
masks.append(fused)
return torch.cat(masks, dim=0)
def _sampler_names():
try:
import comfy.samplers
return comfy.samplers.KSampler.SAMPLERS
except Exception:
return ["euler"]
def _scheduler_names():
try:
import comfy.samplers
scheds = list(comfy.samplers.KSampler.SCHEDULERS)
if "MGHybrid" not in scheds:
scheds.append("MGHybrid")
return scheds
except Exception:
return ["normal", "MGHybrid"]
def safe_decode(vae, lat, tile=512, ovlp=128, to_fp32: bool = False):
# Ensure we don't build autograd graphs during final decode steps
with torch.inference_mode():
h, w = lat["samples"].shape[-2:]
if min(h, w) > 1024:
# Increase overlap for ultra-hires to reduce seam artifacts
ov = 128 if max(h, w) > 2048 else ovlp
out = vae.decode_tiled(lat["samples"], tile_x=tile, tile_y=tile, overlap=ov)
else:
out = vae.decode(lat["samples"])
# Move to CPU and detach to release VRAM/graphs early
try:
try:
out = out.detach()
except Exception:
pass
out_cpu = out
try:
out_cpu = out_cpu.to('cpu')
except Exception:
pass
# Optional: force fp32 decode output (after moving to CPU to save VRAM)
try:
if bool(to_fp32) and out_cpu.dtype != torch.float32:
out_cpu = out_cpu.float()
except Exception:
pass
try:
del out
except Exception:
pass
if torch.cuda.is_available():
try:
torch.cuda.synchronize()
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
return out_cpu
except Exception:
return out
def _match_latent_channels(vae, latent: dict, model=None):
"""Align latent channel count to model/VAE expectations (e.g., FLUX/Z_image 16ch) with variance preservation."""
if not isinstance(latent, dict) or ("samples" not in latent):
return latent
z = latent.get("samples", None)
if z is None:
return latent
try:
target_c = None
# Prefer model latent_format if available (more reliable than VAE decoder)
if model is not None:
try:
lf = model.get_model_object("latent_format")
target_c = int(getattr(lf, "latent_channels", None) or 0) or None
except Exception:
target_c = None
fs = getattr(vae, "first_stage_model", None)
dec = getattr(fs, "decoder", None)
if dec is not None and hasattr(dec, "conv_in"):
target_c = target_c or int(dec.conv_in.in_channels)
if target_c is None and hasattr(fs, "latent_channels"):
target_c = int(getattr(fs, "latent_channels"))
if target_c is None and hasattr(vae, "latent_channels"):
target_c = int(getattr(vae, "latent_channels"))
if target_c is None:
return latent
cur_c = int(z.shape[1])
if cur_c == target_c:
return latent
# Repeat channels when divisible (common case: 4 -> 16)
if target_c % cur_c == 0 and cur_c > 0:
rep = target_c // cur_c
reps = [1, rep] + [1] * (z.ndim - 2)
z_fixed = z.repeat(*reps)
# Preserve variance after channel replication
z_fixed = z_fixed / (rep ** 0.5)
else:
# Fallback: pad zeros or slice to match
if target_c > cur_c:
pad = target_c - cur_c
pad_tensor = torch.zeros_like(z[:, :1, ...]).repeat(1, pad, *([1] * (z.ndim - 2)))
z_fixed = torch.cat([z, pad_tensor], dim=1)
else:
z_fixed = z[:, :target_c, ...]
latent = {**latent, "samples": z_fixed}
except Exception:
pass
return latent
def _harmonize_cond_tokens(cond_list):
"""Pad/truncate cond tokens + masks to a common length to avoid mismatches (e.g., 499 vs 528 or 981 vs 1286)."""
if not isinstance(cond_list, list):
return cond_list
# pass 1: find max token length across cross_attn
max_len = 0
for c in cond_list:
if isinstance(c, dict):
ca = c.get("cross_attn", None)
if ca is not None:
try:
max_len = max(max_len, int(ca.shape[1]))
except Exception:
pass
if max_len <= 0:
return cond_list
fixed = []
for c in cond_list:
if not isinstance(c, dict):
fixed.append(c)
continue
d = c.copy()
ca = d.get("cross_attn", None)
am = d.get("attention_mask", None)
# Harmonize cross_attn length
if ca is not None:
try:
ca_len = int(ca.shape[1])
if ca_len < max_len:
pad_shape = list(ca.shape)
pad_shape[1] = max_len - ca_len
ca_pad = torch.zeros(pad_shape, device=ca.device, dtype=ca.dtype)
ca = torch.cat([ca, ca_pad], dim=1)
elif ca_len > max_len:
ca = ca[:, :max_len, ...]
d["cross_attn"] = ca
except Exception:
pass
# Harmonize mask length to cross_attn length
if ca is not None:
ca_len = int(ca.shape[1])
if am is None:
am = torch.ones((ca.shape[0], ca_len), device=ca.device, dtype=ca.dtype)
try:
am_len = int(am.shape[-1] if am.dim() == 2 else am.shape[1])
if am_len < ca_len:
pad = ca_len - am_len
pad_shape = list(am.shape)
pad_shape[-1] = pad
pad_tensor = torch.zeros(pad_shape, device=am.device, dtype=am.dtype)
am = torch.cat([am, pad_tensor], dim=-1)
elif am_len > ca_len:
am = am[..., :ca_len]
d["attention_mask"] = am
try:
d["num_tokens"] = int(torch.count_nonzero(am, dim=-1).max().item())
except Exception:
d["num_tokens"] = ca_len
except Exception:
pass
fixed.append(d)
return fixed
def _summarize_conds(label, conds):
out = []
if isinstance(conds, list):
for idx, c in enumerate(conds):
try:
ca = c.get("cross_attn", None) if isinstance(c, dict) else None
am = c.get("attention_mask", None) if isinstance(c, dict) else None
out.append(f"{label}[{idx}]: ca={None if ca is None else list(ca.shape)}, am={None if am is None else list(am.shape)}")
except Exception:
pass
return "; ".join(out)
def safe_encode(vae, img, tile=512, ovlp=64):
import math, torch.nn.functional as F
h, w = img.shape[1:3]
try:
stride = int(vae.spacial_compression_decode())
except Exception:
stride = 8
if stride <= 0:
stride = 8
def _align_up(x, s):
return int(((x + s - 1) // s) * s)
Ht = _align_up(h, stride)
Wt = _align_up(w, stride)
x = img
if (Ht != h) or (Wt != w):
# pad on bottom/right using replicate to avoid black borders
pad_h = Ht - h
pad_w = Wt - w
x_nchw = img.movedim(-1, 1)
x_nchw = F.pad(x_nchw, (0, pad_w, 0, pad_h), mode='replicate')
x = x_nchw.movedim(1, -1)
with torch.inference_mode():
if min(Ht, Wt) > 1024:
ov = 128 if max(Ht, Wt) > 2048 else ovlp
out = vae.encode_tiled(x[:, :, :, :3], tile_x=tile, tile_y=tile, overlap=ov)
else:
out = vae.encode(x[:, :, :, :3])
try:
torch.cuda.synchronize() if torch.cuda.is_available() else None
except Exception:
pass
return out
def _gaussian_kernel(kernel_size: int, sigma: float, device=None):
x, y = torch.meshgrid(
torch.linspace(-1, 1, kernel_size, device=device),
torch.linspace(-1, 1, kernel_size, device=device),
indexing="ij",
)
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
def _sharpen_image(image: torch.Tensor, sharpen_radius: int, sigma: float, alpha: float):
if sharpen_radius == 0:
return (image,)
image = image.to(model_management.get_torch_device())
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = _gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha * 10)
kernel = kernel.to(dtype=image.dtype)
center = kernel_size // 2
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2)
tensor_image = F.pad(tensor_image, (sharpen_radius, sharpen_radius, sharpen_radius, sharpen_radius), 'reflect')
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:, :, sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result.to(model_management.intermediate_device()),)
def _encode_clip_image(image: torch.Tensor, clip_vision, target_res: int) -> torch.Tensor:
# image: BHWC in [0,1]
img = image.movedim(-1, 1) # BCHW
img = F.interpolate(img, size=(target_res, target_res), mode="bilinear", align_corners=False)
img = (img * 2.0) - 1.0
embeds = clip_vision.encode_image(img)["image_embeds"]
embeds = F.normalize(embeds, dim=-1)
return embeds
def _clip_cosine_distance(a: torch.Tensor, b: torch.Tensor) -> float:
if a.shape != b.shape:
m = min(a.shape[0], b.shape[0])
a = a[:m]
b = b[:m]
sim = (a * b).sum(dim=-1).mean().clamp(-1.0, 1.0).item()
return 1.0 - sim
def _soft_symmetry_blend(image_bhwc: torch.Tensor,
mask_bhwc: torch.Tensor,
alpha: float = 0.03,
lp_sigma: float = 1.5) -> torch.Tensor:
"""Gently mix a mirrored low-frequency component inside mask.
- image_bhwc: [B,H,W,C] in [0,1]
- mask_bhwc: [B,H,W,1] in [0,1]
"""
try:
if image_bhwc is None or mask_bhwc is None:
return image_bhwc
if image_bhwc.ndim != 4 or mask_bhwc.ndim != 4:
return image_bhwc
B, H, W, C = image_bhwc.shape
if C < 3:
return image_bhwc
# Mirror along width
mirror = torch.flip(image_bhwc, dims=[2])
# Low-pass both
x = image_bhwc.movedim(-1, 1)
y = mirror.movedim(-1, 1)
rad = max(1, int(round(lp_sigma)))
x_lp = _gaussian_blur_nchw(x, sigma=float(lp_sigma), radius=rad)
y_lp = _gaussian_blur_nchw(y, sigma=float(lp_sigma), radius=rad)
# High-pass from original
hp = x - x_lp
# Blend LPs inside mask
m = mask_bhwc.movedim(-1, 1).clamp(0, 1)
a = float(max(0.0, min(0.2, alpha)))
base = (1.0 - a * m) * x_lp + (a * m) * y_lp
res = (base + hp).movedim(1, -1).clamp(0, 1)
return res.to(image_bhwc.dtype)
except Exception:
return image_bhwc
def _gaussian_blur_nchw(x: torch.Tensor, sigma: float = 1.0, radius: int = 1) -> torch.Tensor:
"""Lightweight depthwise Gaussian blur for NCHW or NCDHW tensors.
Uses reflect padding and a normalized kernel built by _gaussian_kernel.
"""
if radius <= 0:
return x
ksz = radius * 2 + 1
kernel = _gaussian_kernel(ksz, sigma, device=x.device).to(dtype=x.dtype)
# Support 5D by folding depth into batch
if x.ndim == 5:
b, c, d, h, w = x.shape
x2 = x.permute(0, 2, 1, 3, 4).reshape(b * d, c, h, w)
k = kernel.repeat(c, 1, 1).unsqueeze(1) # [C,1,K,K]
x_pad = F.pad(x2, (radius, radius, radius, radius), mode='reflect')
y2 = F.conv2d(x_pad, k, padding=0, groups=c)
y = y2.reshape(b, d, c, h, w).permute(0, 2, 1, 3, 4)
return y
# 4D path
if x.ndim == 4:
b, c, h, w = x.shape
k = kernel.repeat(c, 1, 1).unsqueeze(1) # [C,1,K,K]
x_pad = F.pad(x, (radius, radius, radius, radius), mode='reflect')
y = F.conv2d(x_pad, k, padding=0, groups=c)
return y
# Fallback: return input if unexpected dims
return x
def _letterbox_nchw(x: torch.Tensor, target: int, pad_val: float = 114.0 / 255.0) -> torch.Tensor:
"""Letterbox a BCHW tensor to target x target with constant padding (YOLO-style).
Preserves aspect ratio, centers content, pads with pad_val.
"""
if x.ndim != 4:
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False)
b, c, h, w = x.shape
if h == 0 or w == 0:
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False)
r = float(min(target / max(1, h), target / max(1, w)))
nh = max(1, int(round(h * r)))
nw = max(1, int(round(w * r)))
y = F.interpolate(x, size=(nh, nw), mode='bilinear', align_corners=False)
pt = (target - nh) // 2
pb = target - nh - pt
pl = (target - nw) // 2
pr = target - nw - pl
if pt < 0 or pb < 0 or pl < 0 or pr < 0:
# Fallback stretch if rounding went weird
return F.interpolate(x, size=(target, target), mode='bilinear', align_corners=False)
return F.pad(y, (pl, pr, pt, pb), mode='constant', value=float(pad_val))
def _fdg_filter(delta: torch.Tensor, low_gain: float, high_gain: float, sigma: float = 1.0, radius: int = 1) -> torch.Tensor:
"""Frequency-Decoupled Guidance: split delta into low/high bands and reweight.
delta: [B,C,H,W]
"""
low = _gaussian_blur_nchw(delta, sigma=sigma, radius=radius)
high = delta - low
return low * float(low_gain) + high * float(high_gain)
def _fdg_energy_fraction(delta: torch.Tensor, sigma: float = 1.0, radius: int = 1) -> torch.Tensor:
"""Return fraction of high-frequency energy: E_high / (E_low + E_high)."""
low = _gaussian_blur_nchw(delta, sigma=sigma, radius=radius)
high = delta - low
e_low = (low * low).mean(dim=(1, 2, 3), keepdim=True)
e_high = (high * high).mean(dim=(1, 2, 3), keepdim=True)
frac = e_high / (e_low + e_high + 1e-8)
return frac
def _fdg_split_three(delta: torch.Tensor,
sigma_lo: float = 0.8,
sigma_hi: float = 2.0,
radius: int = 1) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
sig_lo = float(max(0.05, sigma_lo))
sig_hi = float(max(sig_lo + 1e-3, sigma_hi))
blur_lo = _gaussian_blur_nchw(delta, sigma=sig_lo, radius=radius)
blur_hi = _gaussian_blur_nchw(delta, sigma=sig_hi, radius=radius)
low = blur_hi
mid = blur_lo - blur_hi
high = delta - blur_lo
return low, mid, high
def _wrap_model_with_guidance(model, guidance_mode: str, rescale_multiplier: float, momentum_beta: float, cfg_curve: float, perp_damp: float, use_zero_init: bool=False, zero_init_steps: int=0, fdg_low: float = 0.6, fdg_high: float = 1.3, fdg_sigma: float = 1.0, ze_zero_steps: int = 0, ze_adaptive: bool = False, ze_r_switch_hi: float = 0.6, ze_r_switch_lo: float = 0.45, fdg_low_adaptive: bool = False, fdg_low_min: float = 0.45, fdg_low_max: float = 0.7, fdg_ema_beta: float = 0.8, use_local_mask: bool = False, mask_inside: float = 1.0, mask_outside: float = 1.0,
midfreq_enable: bool = False, midfreq_gain: float = 0.0, midfreq_sigma_lo: float = 0.8, midfreq_sigma_hi: float = 2.0,
mahiro_plus_enable: bool = False, mahiro_plus_strength: float = 0.5,
eps_scale_enable: bool = False, eps_scale: float = 0.0,
cfg_sched_type: str = "off", cfg_sched_min: float = 0.0, cfg_sched_max: float = 0.0,
cfg_sched_gamma: float = 1.5, cfg_sched_u_pow: float = 1.0,
cwn_enable: bool = True, alpha_c: float = 1.0, alpha_u: float = 1.0,
agc_enable: bool = True, agc_tau: float = 2.8,
nag_fb_enable: bool = False, nag_fb_scale: float = 4.0, nag_fb_tau: float = 2.5, nag_fb_alpha: float = 0.25):
"""Clone model and attach a cfg mixing function implementing RescaleCFG/FDG, CFGZero*/FD, or hybrid ZeResFDG.
guidance_mode: 'default' | 'RescaleCFG' | 'RescaleFDG' | 'CFGZero*' | 'CFGZeroFD' | 'ZeResFDG'
"""
if guidance_mode == "default":
return model
m = model.clone()
# State for momentum and sigma normalization across steps
prev_delta = {"t": None}
sigma_seen = {"max": None, "min": None}
# Spectral switching/adaptive low state
spec_state = {"ema": None, "mode": "CFGZeroFD"}
# External reset hook to emulate fresh state per iteration without re-cloning the model
def _reset_state():
try:
prev_delta["t"] = None
sigma_seen["max"] = None
sigma_seen["min"] = None
spec_state["ema"] = None
spec_state["mode"] = "CFGZeroFD"
except Exception:
pass
try:
setattr(m, "mg_guidance_reset", _reset_state)
except Exception:
pass
def cfg_func(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
sigma = args.get("sigma", None)
x_orig = args.get("input", None)
# --- NAG fallback in noise-space (when CrossAttention patch is inactive) ---
if bool(nag_fb_enable):
try:
active = bool(getattr(sa_patch, "_nag_patch_active", False))
except Exception:
active = False
if not active:
try:
phi = float(nag_fb_scale); tau = float(nag_fb_tau); a = float(nag_fb_alpha)
g = cond * phi - uncond * (phi - 1.0)
def _l1(x):
return torch.sum(torch.abs(x), dim=(1,2,3), keepdim=True).clamp_min(1e-6)
s_pos = _l1(cond); s_g = _l1(g)
scale = (s_pos * tau) / s_g
g = torch.where((s_g > s_pos * tau), g * scale, g)
cond = g * a + cond * (1.0 - a)
except Exception:
pass
# Local spatial gain from CURRENT_ONNX_MASK_BCHW, resized to cond spatial size
def _local_gain_for(hw):
if not bool(use_local_mask):
return None
m = globals().get("CURRENT_ONNX_MASK_BCHW", None)
if m is None:
return None
try:
Ht, Wt = int(hw[0]), int(hw[1])
g = m.to(device=cond.device, dtype=cond.dtype)
if g.shape[-2] != Ht or g.shape[-1] != Wt:
g = F.interpolate(g, size=(Ht, Wt), mode='bilinear', align_corners=False)
gi = float(mask_inside)
go = float(mask_outside)
gain = g * gi + (1.0 - g) * go # [B,1,H,W]
return gain
except Exception:
return None
# Compute effective cond scale before any branch, so schedules apply in all modes
cond_scale_eff = cond_scale
curve_gain = 1.0
if cfg_curve > 0.0 and (sigma is not None):
s = sigma
if s.ndim > 1:
s = s.flatten()
s_max = float(torch.max(s).item())
s_min = float(torch.min(s).item())
if sigma_seen["max"] is None:
sigma_seen["max"] = s_max
sigma_seen["min"] = s_min
else:
sigma_seen["max"] = max(sigma_seen["max"], s_max)
sigma_seen["min"] = min(sigma_seen["min"], s_min)
lo = max(1e-6, sigma_seen["min"])
hi = max(lo * (1.0 + 1e-6), sigma_seen["max"])
t = (torch.log(s + 1e-6) - torch.log(torch.tensor(lo, device=sigma.device))) / (torch.log(torch.tensor(hi, device=sigma.device)) - torch.log(torch.tensor(lo, device=sigma.device)) + 1e-6)
t = t.clamp(0.0, 1.0)
k = 6.0 * float(cfg_curve)
s_curve = torch.tanh((t - 0.5) * k)
g = 1.0 + 0.15 * float(cfg_curve) * s_curve
if g.ndim > 0:
g = g.mean().item()
curve_gain = float(g)
cond_scale_eff = cond_scale * curve_gain
if isinstance(cfg_sched_type, str) and cfg_sched_type.lower() != "off" and (sigma is not None):
try:
s = sigma
if s.ndim > 1:
s = s.flatten()
s_max = float(torch.max(s).item())
s_min = float(torch.min(s).item())
if sigma_seen["max"] is None:
sigma_seen["max"] = s_max
sigma_seen["min"] = s_min
else:
sigma_seen["max"] = max(sigma_seen["max"], s_max)
sigma_seen["min"] = min(sigma_seen["min"], s_min)
lo = max(1e-6, sigma_seen["min"])
hi = max(lo * (1.0 + 1e-6), sigma_seen["max"])
t = (torch.log(s + 1e-6) - torch.log(torch.tensor(lo, device=sigma.device))) / (torch.log(torch.tensor(hi, device=sigma.device)) - torch.log(torch.tensor(lo, device=sigma.device)) + 1e-6)
t = t.clamp(0.0, 1.0)
if t.ndim > 0:
t_val = float(t.mean().item())
else:
t_val = float(t.item())
cmin = float(max(0.0, cfg_sched_min))
cmax = float(max(cmin, cfg_sched_max))
tp = cfg_sched_type.lower()
if tp == "cosine":
import math
cfg_val = cmax - (cmax - cmin) * 0.5 * (1.0 + math.cos(math.pi * t_val))
elif tp in ("warmup", "warm-up", "linear"):
g = float(max(0.0, min(1.0, t_val))) ** float(max(0.1, cfg_sched_gamma))
cfg_val = cmin + (cmax - cmin) * g
elif tp in ("u", "u-shape", "ushape"):
e = 4.0 * (t_val - 0.5) * (t_val - 0.5)
e = float(min(1.0, max(0.0, e)))
e = e ** float(max(0.1, cfg_sched_u_pow))
cfg_val = cmin + (cmax - cmin) * e
else:
cfg_val = cond_scale_eff
cond_scale_eff = float(cfg_val) * float(curve_gain)
except Exception:
pass
# Allow hybrid switch per-step
mode = guidance_mode
if guidance_mode == "ZeResFDG":
if bool(ze_adaptive):
try:
delta_raw = args["cond"] - args["uncond"]
frac_b = _fdg_energy_fraction(delta_raw, sigma=float(fdg_sigma), radius=1) # [B,1,1,1]
frac = float(frac_b.mean().clamp(0.0, 1.0).item())
except Exception:
frac = 0.0
if spec_state["ema"] is None:
spec_state["ema"] = frac
else:
beta = float(max(0.0, min(0.99, fdg_ema_beta)))
spec_state["ema"] = beta * float(spec_state["ema"]) + (1.0 - beta) * frac
r = float(spec_state["ema"])
# Hysteresis: switch up/down with two thresholds
if spec_state["mode"] == "CFGZeroFD" and r >= float(ze_r_switch_hi):
spec_state["mode"] = "RescaleFDG"
elif spec_state["mode"] == "RescaleFDG" and r <= float(ze_r_switch_lo):
spec_state["mode"] = "CFGZeroFD"
mode = spec_state["mode"]
else:
try:
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"]
matched_idx = (sigmas == args["timestep"][0]).nonzero()
if len(matched_idx) > 0:
current_idx = matched_idx.item()
else:
current_idx = 0
except Exception:
current_idx = 0
mode = "CFGZeroFD" if current_idx <= int(ze_zero_steps) else "RescaleFDG"
if mode in ("CFGZero*", "CFGZeroFD"):
# Optional zero-init for the first N steps
if use_zero_init and "model_options" in args and args.get("timestep") is not None:
try:
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"]
matched_idx = (sigmas == args["timestep"][0]).nonzero()
if len(matched_idx) > 0:
current_idx = matched_idx.item()
else:
# fallback lookup
current_idx = 0
if current_idx <= int(zero_init_steps):
return cond * 0.0
except Exception:
pass
# CWN for CFGZero branches: energy align cond/uncond before projection
if bool(cwn_enable):
try:
_eps = 1e-6
sc = (cond.pow(2).mean(dim=(1, 2, 3), keepdim=True).sqrt() + _eps)
su = (uncond.pow(2).mean(dim=(1, 2, 3), keepdim=True).sqrt() + _eps)
g = 0.5 * (sc + su)
cond = cond * (float(alpha_c) * g / sc)
uncond = uncond * (float(alpha_u) * g / su)
except Exception:
pass
# Project cond onto uncond subspace (batch-wise alpha)
bsz = cond.shape[0]
pos_flat = cond.view(bsz, -1)
neg_flat = uncond.view(bsz, -1)
dot = torch.sum(pos_flat * neg_flat, dim=1, keepdim=True)
denom = torch.sum(neg_flat * neg_flat, dim=1, keepdim=True).clamp_min(1e-8)
alpha = (dot / denom).view(bsz, *([1] * (cond.dim() - 1)))
resid = cond - uncond * alpha
# Adaptive low gain if enabled
low_gain_eff = float(fdg_low)
if bool(fdg_low_adaptive) and spec_state["ema"] is not None:
s = float(spec_state["ema"]) # 0..1 fraction of high-frequency energy
lmin = float(fdg_low_min)
lmax = float(fdg_low_max)
low_gain_eff = max(0.0, min(2.0, lmin + (lmax - lmin) * s))
if mode == "CFGZeroFD":
resid = _fdg_filter(resid, low_gain=low_gain_eff, high_gain=fdg_high, sigma=float(fdg_sigma), radius=1)
# Apply local spatial gain to residual guidance
lg = _local_gain_for((cond.shape[-2], cond.shape[-1]))
if lg is not None:
resid = resid * lg.expand(-1, resid.shape[1], -1, -1)
# --- AGC for CFGZero branches ---
if bool(agc_enable):
try:
t = float(max(0.5, agc_tau))
resid = t * torch.tanh(resid / t)
except Exception:
pass
noise_pred = uncond * alpha + cond_scale_eff * resid
return noise_pred
# RescaleCFG/FDG path (with optional momentum/perp damping and S-curve shaping)
delta = cond - uncond
pd = float(max(0.0, min(1.0, perp_damp)))
if pd > 0.0 and (prev_delta["t"] is not None) and (prev_delta["t"].shape == delta.shape):
prev = prev_delta["t"]
denom = (prev * prev).sum(dim=(1,2,3), keepdim=True).clamp_min(1e-6)
coeff = ((delta * prev).sum(dim=(1,2,3), keepdim=True) / denom)
parallel = coeff * prev
delta = delta - pd * parallel
beta = float(max(0.0, min(0.95, momentum_beta)))
if beta > 0.0:
if prev_delta["t"] is None or prev_delta["t"].shape != delta.shape:
prev_delta["t"] = delta.detach()
delta = (1.0 - beta) * delta + beta * prev_delta["t"]
prev_delta["t"] = delta.detach()
cond = uncond + delta
else:
prev_delta["t"] = delta.detach()
# --- Adaptive Guidance Clipping (AGC) ---
if bool(agc_enable):
try:
t = float(max(0.5, agc_tau))
delta = t * torch.tanh(delta / t)
except Exception:
pass
# After momentum: optionally apply FDG and rebuild cond
if mode == "RescaleFDG":
# Adaptive low gain if enabled
low_gain_eff = float(fdg_low)
if bool(fdg_low_adaptive) and spec_state["ema"] is not None:
s = float(spec_state["ema"]) # 0..1
lmin = float(fdg_low_min)
lmax = float(fdg_low_max)
low_gain_eff = max(0.0, min(2.0, lmin + (lmax - lmin) * s))
delta_fdg = _fdg_filter(delta, low_gain=low_gain_eff, high_gain=fdg_high, sigma=float(fdg_sigma), radius=1)
# Optional mid-frequency emphasis blended on top
if bool(midfreq_enable) and abs(float(midfreq_gain)) > 1e-6:
lo_b, mid_b, hi_b = _fdg_split_three(delta, sigma_lo=float(midfreq_sigma_lo), sigma_hi=float(midfreq_sigma_hi), radius=1)
lg = _local_gain_for((cond.shape[-2], cond.shape[-1]))
if lg is not None:
mid_b = mid_b * lg.expand(-1, mid_b.shape[1], -1, -1)
delta_fdg = delta_fdg + float(midfreq_gain) * mid_b
lg = _local_gain_for((cond.shape[-2], cond.shape[-1]))
if lg is not None:
delta_fdg = delta_fdg * lg.expand(-1, delta_fdg.shape[1], -1, -1)
cond = uncond + delta_fdg
else:
lg = _local_gain_for((cond.shape[-2], cond.shape[-1]))
if lg is not None:
delta = delta * lg.expand(-1, delta.shape[1], -1, -1)
cond = uncond + delta
# Epsilon scaling (exposure bias correction): early steps get multiplier closer to (1 + eps_scale)
eps_mult = 1.0
if bool(eps_scale_enable) and (sigma is not None):
try:
s = sigma
if s.ndim > 1:
s = s.flatten()
s_max = float(torch.max(s).item())
s_min = float(torch.min(s).item())
if sigma_seen["max"] is None:
sigma_seen["max"] = s_max
sigma_seen["min"] = s_min
else:
sigma_seen["max"] = max(sigma_seen["max"], s_max)
sigma_seen["min"] = min(sigma_seen["min"], s_min)
lo = max(1e-6, sigma_seen["min"])
hi = max(lo * (1.0 + 1e-6), sigma_seen["max"])
t_lin = (torch.log(s + 1e-6) - torch.log(torch.tensor(lo, device=sigma.device))) / (torch.log(torch.tensor(hi, device=sigma.device)) - torch.log(torch.tensor(lo, device=sigma.device)) + 1e-6)
t_lin = t_lin.clamp(0.0, 1.0)
w_early = (1.0 - t_lin).mean().item()
eps_mult = float(1.0 + eps_scale * w_early)
except Exception:
eps_mult = float(1.0 + eps_scale)
if sigma is None or x_orig is None:
return uncond + cond_scale * (cond - uncond)
sigma_ = sigma.view(sigma.shape[:1] + (1,) * (cond.ndim - 1))
x = x_orig / (sigma_ * sigma_ + 1.0)
v_cond = ((x - (x_orig - cond)) * (sigma_ ** 2 + 1.0) ** 0.5) / (sigma_)
v_uncond = ((x - (x_orig - uncond)) * (sigma_ ** 2 + 1.0) ** 0.5) / (sigma_)
# CWN in v-space (more stable than eps-space)
if bool(cwn_enable):
try:
_eps = 1e-6
rc = (v_cond.pow(2).mean(dim=(1,2,3), keepdim=True).sqrt() + _eps)
ru = (v_uncond.pow(2).mean(dim=(1,2,3), keepdim=True).sqrt() + _eps)
v_cond_n = (v_cond / rc) * float(alpha_c)
v_uncond_n = (v_uncond / ru) * float(alpha_u)
except Exception:
v_cond_n, v_uncond_n = v_cond, v_uncond
else:
v_cond_n, v_uncond_n = v_cond, v_uncond
v_cfg = v_uncond_n + cond_scale_eff * (v_cond_n - v_uncond_n)
ro_pos = torch.std(v_cond_n, dim=(1, 2, 3), keepdim=True)
ro_cfg = torch.std(v_cfg, dim=(1, 2, 3), keepdim=True).clamp_min(1e-6)
v_rescaled = v_cfg * (ro_pos / ro_cfg)
v_final = float(rescale_multiplier) * v_rescaled + (1.0 - float(rescale_multiplier)) * v_cfg
eps = x_orig - (x - (v_final * eps_mult) * sigma_ / (sigma_ * sigma_ + 1.0) ** 0.5)
return eps
m.set_model_sampler_cfg_function(cfg_func, disable_cfg1_optimization=True)
# Note: ControlNet class-label injection wrapper removed to keep CADE neutral.
# Optional directional post-mix (Muse Blend), global, no ONNX
if bool(mahiro_plus_enable):
s_clamp = float(max(0.0, min(1.0, mahiro_plus_strength)))
mb_state = {"ema": None}
def _sqrt_sign(x: torch.Tensor) -> torch.Tensor:
return x.sign() * torch.sqrt(x.abs().clamp_min(1e-12))
def _hp_split(x: torch.Tensor, radius: int = 1, sigma: float = 1.0):
low = _gaussian_blur_nchw(x, sigma=sigma, radius=radius)
high = x - low
return low, high
def _sched_gain(args) -> float:
# Gentle mid-steps boost: triangle peak at the middle of schedule
try:
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"]
idx_t = args.get("timestep", None)
if idx_t is None:
return 1.0
matched = (sigmas == idx_t[0]).nonzero()
if len(matched) == 0:
return 1.0
i = float(matched.item())
n = float(sigmas.shape[0])
if n <= 1:
return 1.0
phase = i / (n - 1.0)
tri = 1.0 - abs(2.0 * phase - 1.0)
return float(0.6 + 0.4 * tri) # 0.6 at edges -> 1.0 mid
except Exception:
return 1.0
def mahiro_plus_post(args):
try:
scale = args.get('cond_scale', 1.0)
cond_p = args['cond_denoised']
uncond_p = args['uncond_denoised']
cfg = args['denoised']
# Orthogonalize positive to negative direction (batch-wise)
bsz = cond_p.shape[0]
pos_flat = cond_p.view(bsz, -1)
neg_flat = uncond_p.view(bsz, -1)
dot = torch.sum(pos_flat * neg_flat, dim=1, keepdim=True)
denom = torch.sum(neg_flat * neg_flat, dim=1, keepdim=True).clamp_min(1e-8)
alpha = (dot / denom).view(bsz, *([1] * (cond_p.dim() - 1)))
c_orth = cond_p - uncond_p * alpha
leap_raw = float(scale) * c_orth
# Light high-pass emphasis for detail, protect low-frequency tone
low, high = _hp_split(leap_raw, radius=1, sigma=1.0)
leap = 0.35 * low + 1.00 * high
# Directional agreement (global cosine over flattened dims)
u_leap = float(scale) * uncond_p
merge = 0.5 * (leap + cfg)
nu = _sqrt_sign(u_leap).flatten(1)
nm = _sqrt_sign(merge).flatten(1)
sim = F.cosine_similarity(nu, nm, dim=1).mean()
a = torch.clamp((sim + 1.0) * 0.5, 0.0, 1.0)
# Small EMA for temporal smoothness
if mb_state["ema"] is None:
mb_state["ema"] = float(a)
else:
mb_state["ema"] = 0.8 * float(mb_state["ema"]) + 0.2 * float(a)
a_eff = float(mb_state["ema"])
w = a_eff * cfg + (1.0 - a_eff) * leap
# Gentle energy match to CFG
dims = tuple(range(1, w.dim()))
ro_w = torch.std(w, dim=dims, keepdim=True).clamp_min(1e-6)
ro_cfg = torch.std(cfg, dim=dims, keepdim=True).clamp_min(1e-6)
w_res = w * (ro_cfg / ro_w)
# Schedule gain over steps (mid stronger)
s_eff = s_clamp * _sched_gain(args)
out = (1.0 - s_eff) * cfg + s_eff * w_res
return out
except Exception:
return args['denoised']
try:
m.set_model_sampler_post_cfg_function(mahiro_plus_post)
except Exception:
pass
# Quantile clamp stabilizer (per-sample): soft range limit for denoised tensor
# Always on, under the hood. Helps prevent rare exploding values.
def _qclamp_post(args):
try:
x = args.get("denoised", None)
if x is None:
return args["denoised"]
dt = x.dtype
xf = x.to(dtype=torch.float32)
B = xf.shape[0]
lo_q, hi_q = 0.001, 0.999
out = []
for i in range(B):
t = xf[i].reshape(-1)
try:
lo = torch.quantile(t, lo_q)
hi = torch.quantile(t, hi_q)
except Exception:
n = t.numel()
k_lo = max(1, int(n * lo_q))
k_hi = max(1, int(n * hi_q))
lo = torch.kthvalue(t, k_lo).values
hi = torch.kthvalue(t, k_hi).values
out.append(xf[i].clamp(min=lo, max=hi))
y = torch.stack(out, dim=0).to(dtype=dt)
return y
except Exception:
return args["denoised"]
try:
m.set_model_sampler_post_cfg_function(_qclamp_post)
except Exception:
pass
return m
def _edge_mask(image_bhwc: torch.Tensor,
threshold: float = 0.20,
blur: float = 1.0) -> torch.Tensor:
"""Return a simple edge mask BHWC [0,1] using Sobel magnitude on luminance.
It is resolution-agnostic and intentionally lightweight.
"""
try:
img = image_bhwc
lum = (0.2126 * img[..., 0] + 0.7152 * img[..., 1] + 0.0722 * img[..., 2])
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=img.device, dtype=img.dtype).view(1, 1, 3, 3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=img.device, dtype=img.dtype).view(1, 1, 3, 3)
g = torch.sqrt((F.conv2d(lum.unsqueeze(1), kx, padding=1) ** 2) + (F.conv2d(lum.unsqueeze(1), ky, padding=1) ** 2))
g = g.squeeze(1)
# Robust normalization via 98th percentile
try:
q = torch.quantile(g.flatten(), 0.98).clamp_min(1e-6)
except Exception:
q = torch.topk(g.flatten(), max(1, int(g.numel() * 0.02))).values.min().clamp_min(1e-6)
m = (g / q).clamp(0, 1)
if threshold > 0.0:
m = (m > float(threshold)).to(img.dtype)
if blur > 0.0:
rad = int(max(1, min(5, round(float(blur)))))
m = _gaussian_blur_nchw(m.unsqueeze(1), sigma=float(max(0.5, blur)), radius=rad).squeeze(1)
return m.unsqueeze(-1)
except Exception:
return torch.zeros((image_bhwc.shape[0], image_bhwc.shape[1], image_bhwc.shape[2], 1), device=image_bhwc.device, dtype=image_bhwc.dtype)
def _cf_edges_post(acc_t: torch.Tensor,
edge_width: float,
edge_smooth: float,
edge_single_line: bool,
edge_single_strength: float) -> torch.Tensor:
try:
import cv2, numpy as _np
img = (acc_t.clamp(0,1).detach().to('cpu').numpy()*255.0).astype(_np.uint8)
# Thickness adjust
if float(edge_width) != 0.0:
s = float(edge_width)
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
op = cv2.dilate if s > 0 else cv2.erode
it = int(max(0, min(6, round(abs(s) * 4.0))))
frac = abs(s) * 4.0 - it
for _ in range(max(0, it)):
img = op(img, k, iterations=1)
if frac > 1e-6:
y2 = op(img, k, iterations=1)
img = ((1.0-frac)*img.astype(_np.float32) + frac*y2.astype(_np.float32)).astype(_np.uint8)
# Collapse double lines to single centerline
if bool(edge_single_line) and float(edge_single_strength) > 1e-6:
try:
s = float(edge_single_strength)
close = cv2.morphologyEx(img, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)), iterations=1)
if hasattr(cv2, 'ximgproc') and hasattr(cv2.ximgproc, 'thinning'):
sk = cv2.ximgproc.thinning(close)
else:
iters = max(1, int(round(2 + 6*s)))
sk = _np.zeros_like(close)
src = close.copy()
elem = cv2.getStructuringElement(cv2.MORPH_CROSS, (3,3))
for _ in range(iters):
er = cv2.erode(src, elem, iterations=1)
opn = cv2.morphologyEx(er, cv2.MORPH_OPEN, elem)
tmp = cv2.subtract(er, opn)
sk = cv2.bitwise_or(sk, tmp)
src = er
if not _np.any(src):
break
img = ((1.0 - s) * img.astype(_np.float32) + s * sk.astype(_np.float32)).astype(_np.uint8)
except Exception:
pass
# Smooth
if float(edge_smooth) > 1e-6:
sigma = max(0.1, min(2.0, float(edge_smooth) * 1.2))
img = cv2.GaussianBlur(img, (0,0), sigmaX=sigma)
out = torch.from_numpy((img.astype(_np.float32)/255.0)).to(device=acc_t.device, dtype=acc_t.dtype)
return out.clamp(0,1)
except Exception:
# Torch fallback: light blur-only and basic thicken/thin
y = acc_t
if float(edge_width) > 1e-6:
k = max(1, int(round(float(edge_width) * 2)))
p = k
y = F.max_pool2d(y.unsqueeze(0).unsqueeze(0), kernel_size=2*k+1, stride=1, padding=p)[0,0]
if float(edge_width) < -1e-6:
k = max(1, int(round(abs(float(edge_width)) * 2)))
p = k
maxed = F.max_pool2d((1.0 - y).unsqueeze(0).unsqueeze(0), kernel_size=2*k+1, stride=1, padding=p)[0,0]
y = 1.0 - maxed
if float(edge_smooth) > 1e-6:
s = max(1, int(round(float(edge_smooth)*2)))
y = F.avg_pool2d(y.unsqueeze(0).unsqueeze(0), kernel_size=2*s+1, stride=1, padding=s)[0,0]
return y.clamp(0,1)
def _build_cf_edge_mask_from_step(image_bhwc: torch.Tensor, preset_step: str) -> torch.Tensor | None:
try:
p = load_preset("mg_controlfusion", preset_step)
# Safe converters (preset values may be blank strings)
def _safe_int(val, default):
try:
iv = int(val)
return iv if iv > 0 else default
except Exception:
return default
def _safe_float(val, default):
try:
return float(val)
except Exception:
return default
# Read CF params with safe defaults
enable_depth = bool(p.get('enable_depth', True))
depth_model_path = str(p.get('depth_model_path', ''))
depth_resolution = _safe_int(p.get('depth_resolution', 768), 768)
hires_mask_auto = bool(p.get('hires_mask_auto', True))
pyra_low = _safe_int(p.get('pyra_low', 109), 109)
pyra_high = _safe_int(p.get('pyra_high', 147), 147)
pyra_resolution = _safe_int(p.get('pyra_resolution', 1024), 1024)
edge_thin_iter = int(p.get('edge_thin_iter', 0))
edge_boost = _safe_float(p.get('edge_boost', 0.0), 0.0)
smart_tune = bool(p.get('smart_tune', False))
smart_boost = _safe_float(p.get('smart_boost', 0.2), 0.2)
edge_width = _safe_float(p.get('edge_width', 0.0), 0.0)
edge_smooth = _safe_float(p.get('edge_smooth', 0.0), 0.0)
edge_single_line = bool(p.get('edge_single_line', False))
edge_single_strength = _safe_float(p.get('edge_single_strength', 0.0), 0.0)
edge_depth_gate = bool(p.get('edge_depth_gate', False))
edge_depth_gamma = _safe_float(p.get('edge_depth_gamma', 1.5), 1.5)
edge_alpha = _safe_float(p.get('edge_alpha', 1.0), 1.0)
# Treat blend_factor as extra gain for edges (depth is not mixed here)
blend_factor = _safe_float(p.get('blend_factor', 0.02), 0.02)
# ControlNet multipliers: use edge_strength_mul as an additional gain for the edge mask
edge_strength_mul = _safe_float(p.get('edge_strength_mul', 1.0), 1.0)
# Build edges with CF PyraCanny
ed = _cf_pyracanny(image_bhwc, pyra_low, pyra_high, pyra_resolution,
edge_thin_iter, edge_boost, smart_tune, smart_boost,
preserve_aspect=bool(hires_mask_auto))
ed = _cf_edges_post(ed, edge_width, edge_smooth, edge_single_line, edge_single_strength)
# Depth-gate edges if enabled
if edge_depth_gate and enable_depth:
try:
depth = _cf_build_depth(image_bhwc, int(depth_resolution), str(depth_model_path), bool(hires_mask_auto))
g = depth.clamp(0,1) ** float(edge_depth_gamma)
ed = (ed * g).clamp(0,1)
except Exception:
pass
# Apply opacity + edge strength (keep blend_factor only for ControlNet stage, not for mask amplitude)
total_gain = max(0.0, float(edge_alpha)) * max(0.0, float(edge_strength_mul))
ed = (ed * total_gain).clamp(0,1)
# Return BHWC single-channel
return ed.unsqueeze(0).unsqueeze(-1)
except Exception:
return None
def _mask_to_like(mask_bhw1: torch.Tensor, like_bhwc: torch.Tensor) -> torch.Tensor:
try:
if mask_bhw1 is None or like_bhwc is None:
return mask_bhw1
if mask_bhw1.ndim != 4 or like_bhwc.ndim != 4:
return mask_bhw1
_, Ht, Wt, _ = like_bhwc.shape
_, Hm, Wm, C = mask_bhw1.shape
if (Hm, Wm) == (Ht, Wt):
return mask_bhw1
m = mask_bhw1.movedim(-1, 1)
m = F.interpolate(m, size=(Ht, Wt), mode='bilinear', align_corners=False)
return m.movedim(1, -1).clamp(0, 1)
except Exception:
return mask_bhw1
def _align_mask_pair(a_bhw1: torch.Tensor, b_bhw1: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
try:
if a_bhw1 is None or b_bhw1 is None:
return a_bhw1, b_bhw1
if a_bhw1.ndim != 4 or b_bhw1.ndim != 4:
return a_bhw1, b_bhw1
_, Ha, Wa, Ca = a_bhw1.shape
_, Hb, Wb, Cb = b_bhw1.shape
if (Ha, Wa) == (Hb, Wb):
return a_bhw1, b_bhw1
m = b_bhw1.movedim(-1, 1)
m = F.interpolate(m, size=(Ha, Wa), mode='bilinear', align_corners=False)
return a_bhw1, m.movedim(1, -1).clamp(0, 1)
except Exception:
return a_bhw1, b_bhw1
def _mask_dilate(mask_bhw1: torch.Tensor, k: int = 3) -> torch.Tensor:
if k <= 1:
return mask_bhw1
m = mask_bhw1.movedim(-1, 1)
m = F.max_pool2d(m, kernel_size=k, stride=1, padding=k // 2)
return m.movedim(1, -1)
def _mask_erode(mask_bhw1: torch.Tensor, k: int = 3) -> torch.Tensor:
if k <= 1:
return mask_bhw1
m = mask_bhw1.movedim(-1, 1)
e = 1.0 - F.max_pool2d(1.0 - m, kernel_size=k, stride=1, padding=k // 2)
return e.movedim(1, -1)
class ComfyAdaptiveDetailEnhancer25:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"preset_step": (["Step 1", "Step 2", "Step 3", "Step 4"], {"default": "Step 1", "tooltip": "Choose the Step preset. Toggle Custom below to apply UI values; otherwise Step preset values are used."}),
"custom": ("BOOLEAN", {"default": False, "tooltip": "Custom override: when enabled, your UI values override the selected Step for visible controls; hidden parameters still come from the Step preset."}), "model": ("MODEL", {}),
"positive": ("CONDITIONING", {}),
"negative": ("CONDITIONING", {}),
"vae": ("VAE", {}),
"latent": ("LATENT", {}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"denoise": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.0001}),
"sampler_name": (_sampler_names(), {"default": _sampler_names()[0]}),
"scheduler": (_scheduler_names(), {"default": _scheduler_names()[0]}),
"iterations": ("INT", {"default": 1, "min": 1, "max": 1000}),
"steps_delta": ("FLOAT", {"default": 0.0, "min": -1000.0, "max": 1000.0, "step": 0.01}),
"cfg_delta": ("FLOAT", {"default": 0.0, "min": -100.0, "max": 100.0, "step": 0.01}),
"denoise_delta": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.0001}),
"apply_sharpen": ("BOOLEAN", {"default": False}),
"apply_upscale": ("BOOLEAN", {"default": False}),
"apply_ids": ("BOOLEAN", {"default": False}),
"clip_clean": ("BOOLEAN", {"default": False}),
"ids_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"upscale_method": (MagicUpscaleModule.upscale_methods, {"default": "lanczos"}),
"scale_by": ("FLOAT", {"default": 1.2, "min": 1.0, "max": 8.0, "step": 0.01}),
"scale_delta": ("FLOAT", {"default": 0.0, "min": -8.0, "max": 8.0, "step": 0.01}),
"noise_offset": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 0.5, "step": 0.01}),
"threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "RMS latent drift threshold (smaller = more damping)."}),
},
"optional": {
"Sharpnes_strenght": ("FLOAT", {"default": 0.300, "min": 0.0, "max": 1.0, "step": 0.001}),
"latent_compare": ("BOOLEAN", {"default": False, "tooltip": "Use latent drift to gently damp params (safer than overwriting latents)."}),
"accumulation": (["default", "fp32+fp16", "fp32+fp32"], {"default": "default", "tooltip": "Override SageAttention PV accumulation mode for this node run."}),
"reference_clean": ("BOOLEAN", {"default": False, "tooltip": "Use CLIP-Vision similarity to a reference image to stabilize output."}),
"reference_image": ("IMAGE", {}),
"clip_vision": ("CLIP_VISION", {}),
"ref_preview": ("INT", {"default": 224, "min": 64, "max": 512, "step": 16}),
"ref_threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 0.2, "step": 0.001}),
"ref_cooldown": ("INT", {"default": 1, "min": 1, "max": 8}),
# ONNX detectors (beta) unified toggle for Hands/Face/Pose
"onnx_detectors": ("BOOLEAN", {"default": False, "tooltip": "Use auto ONNX detectors (any .onnx in models) to refine artifact mask."}),
"onnx_preview": ("INT", {"default": 224, "min": 64, "max": 512, "step": 16, "tooltip": "Square preview size fed to ONNX models."}),
"onnx_sensitivity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Global gain for fused ONNX mask."}),
"onnx_anomaly_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01, "tooltip": "Extra gain for 'anomaly' models (e.g., anomaly_det.onnx)."}),
# Guidance controls
"guidance_mode": (["default", "RescaleCFG", "RescaleFDG", "CFGZero*", "CFGZeroFD", "ZeResFDG"], {"default": "RescaleCFG", "tooltip": "Rescale (stable), RescaleFDG (spectral), CFGZero*, CFGZeroFD, or hybrid ZeResFDG."}),
"rescale_multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Blend between rescaled and plain CFG (like comfy RescaleCFG)."}),
"momentum_beta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 0.95, "step": 0.01, "tooltip": "EMA momentum in eps-space for (cond-uncond), 0 to disable."}),
"cfg_curve": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "S-curve shaping of cond_scale across steps (0=flat)."}),
"perp_damp": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Remove a small portion of the component parallel to previous delta (0-1)."}),
# NAG (Normalized Attention Guidance) toggles
"use_nag": ("BOOLEAN", {"default": False, "tooltip": "Apply NAG inside CrossAttention (positive branch) during this node."}),
"nag_scale": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 50.0, "step": 0.1}),
"nag_tau": ("FLOAT", {"default": 2.5, "min": 0.0, "max": 10.0, "step": 0.01}),
"nag_alpha": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}),
# CFGZero* extras
"use_zero_init": ("BOOLEAN", {"default": False, "tooltip": "For CFGZero*, zero out first few steps."}),
"zero_init_steps": ("INT", {"default": 0, "min": 0, "max": 20, "step": 1}),
# FDG controls (placed last to avoid reordering existing fields)
"fdg_low": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Low-frequency gain (<1 to restrain masses)."}),
"fdg_high": ("FLOAT", {"default": 1.3, "min": 0.5, "max": 2.5, "step": 0.01, "tooltip": "High-frequency gain (>1 to boost details)."}),
"fdg_sigma": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 2.5, "step": 0.05, "tooltip": "Gaussian sigma for FDG low-pass split."}),
"ze_res_zero_steps": ("INT", {"default": 2, "min": 0, "max": 20, "step": 1, "tooltip": "Hybrid: number of initial steps to use CFGZeroFD before switching to RescaleFDG."}),
# Adaptive spectral switch (ZeRes) and adaptive low gain
"ze_adaptive": ("BOOLEAN", {"default": False, "tooltip": "Enable spectral switch: CFGZeroFD, RescaleFDG by HF/LF ratio (EMA)."}),
"ze_r_switch_hi": ("FLOAT", {"default": 0.60, "min": 0.10, "max": 0.95, "step": 0.01, "tooltip": "Switch to RescaleFDG when EMA fraction of high-frequency."}),
"ze_r_switch_lo": ("FLOAT", {"default": 0.45, "min": 0.05, "max": 0.90, "step": 0.01, "tooltip": "Switch back to CFGZeroFD when EMA fraction (hysteresis)."}),
"fdg_low_adaptive": ("BOOLEAN", {"default": False, "tooltip": "Adapt fdg_low by HF fraction (EMA)."}),
"fdg_low_min": ("FLOAT", {"default": 0.45, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Lower bound for adaptive fdg_low."}),
"fdg_low_max": ("FLOAT", {"default": 0.70, "min": 0.0, "max": 2.0, "step": 0.01, "tooltip": "Upper bound for adaptive fdg_low."}),
"fdg_ema_beta": ("FLOAT", {"default": 0.80, "min": 0.0, "max": 0.99, "step": 0.01, "tooltip": "EMA smoothing for spectral ratio (higher = smoother)."}),
# ONNX local guidance (placed last to avoid reordering)
"onnx_local_guidance": ("BOOLEAN", {"default": False, "tooltip": "Modulate guidance spatially by ONNX mask."}),
"onnx_mask_inside": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Multiplier for guidance inside mask (protects)."}),
"onnx_mask_outside": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 2.0, "step": 0.01, "tooltip": "Multiplier for guidance outside mask."}),
"onnx_debug": ("BOOLEAN", {"default": False, "tooltip": "Print ONNX mask area per iteration."}),
# ONNX wholebody keypoints local heatmap (placed last)
"onnx_kpts_enable": ("BOOLEAN", {"default": False, "tooltip": "Parse YOLO wholebody keypoints and add local heatmap."}),
"onnx_kpts_sigma": ("FLOAT", {"default": 2.5, "min": 0.5, "max": 8.0, "step": 0.1, "tooltip": "Keypoint Gaussian sigma multiplier."}),
"onnx_kpts_gain": ("FLOAT", {"default": 1.5, "min": 0.1, "max": 5.0, "step": 0.1, "tooltip": "Keypoint heat amplitude multiplier."}),
"onnx_kpts_conf": ("FLOAT", {"default": 0.20, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Keypoint confidence threshold."}),
# Muse Blend global directional post-mix
"muse_blend": ("BOOLEAN", {"default": False, "tooltip": "Enable Muse Blend: gentle directional positive blend (global)."}),
"muse_blend_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Overall influence of Muse Blend over baseline CFG (0..1)."}),
# Exposure Bias Correction (epsilon scaling)
"eps_scale_enable": ("BOOLEAN", {"default": False, "tooltip": "Exposure Bias Correction: scale predicted noise early in schedule."}),
"eps_scale": ("FLOAT", {"default": 0.005, "min": -1.0, "max": 1.0, "step": 0.0005, "tooltip": "Signed scaling near early steps (recommended ~0.0045; use with care)."}),
"clipseg_enable": ("BOOLEAN", {"default": False, "tooltip": "Use CLIPSeg to build a text-driven mask (e.g., 'eyes | hands | face')."}),
"clipseg_text": ("STRING", {"default": "", "multiline": False}),
"clipseg_preview": ("INT", {"default": 224, "min": 64, "max": 512, "step": 16}),
"clipseg_threshold": ("FLOAT", {"default": 0.40, "min": 0.0, "max": 1.0, "step": 0.05}),
"clipseg_blur": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 15.0, "step": 0.1}),
"clipseg_dilate": ("INT", {"default": 4, "min": 0, "max": 10, "step": 1}),
"clipseg_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 3.0, "step": 0.01}),
"clipseg_blend": (["fuse", "replace", "intersect"], {"default": "fuse", "tooltip": "How to combine CLIPSeg with ONNX mask."}),
"clipseg_ref_gate": ("BOOLEAN", {"default": False, "tooltip": "If reference provided, boost mask when far from reference (CLIP-Vision)."}),
"clipseg_ref_threshold": ("FLOAT", {"default": 0.03, "min": 0.0, "max": 0.2, "step": 0.001}),
# Preview/output image cap (helps RAM during save/preview)
"preview_downscale": ("BOOLEAN", {"default": True, "tooltip": "Cap final IMAGE to max 1920 on the longer side to reduce RAM spike during save/preview. Disable for full-res output."}),
# Under-the-hood saving (disabled by default to avoid duplicate saves)
"auto_save": ("BOOLEAN", {"default": False, "tooltip": "Save final IMAGE directly from CADE (uses low PNG compress to reduce RAM)."}),
"save_prefix": ("STRING", {"default": "ComfyUI", "multiline": False}),
"save_compress": ("INT", {"default": 1, "min": 0, "max": 9, "step": 1}),
# Polish mode (final hi-res refinement)
"polish_enable": ("BOOLEAN", {"default": False, "tooltip": "Polish: keep low-frequency shape from reference while allowing high-frequency details to refine."}),
"polish_keep_low": ("FLOAT", {"default": 0.4, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "How much low-frequency (global form, lighting) to take from reference image (0=use current, 1=use reference)."}),
"polish_edge_lock": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Edge lock strength: protects edges from sideways drift (0=off, 1=strong)."}),
"polish_sigma": ("FLOAT", {"default": 1.0, "min": 0.3, "max": 3.0, "step": 0.1, "tooltip": "Radius for low/high split: larger keeps bigger shapes as 'low' (global form)."}),
"polish_start_after": ("INT", {"default": 1, "min": 0, "max": 3, "step": 1, "tooltip": "Enable polish after N iterations (0=immediately)."}),
"polish_keep_low_ramp": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Starting share of low-frequency mix; ramps to polish_keep_low over remaining iterations."}),
},
}
RETURN_TYPES = ("LATENT", "IMAGE", "INT", "FLOAT", "FLOAT", "IMAGE")
RETURN_NAMES = ("LATENT", "IMAGE", "steps", "cfg", "denoise", "mask_preview")
FUNCTION = "apply_cade2"
CATEGORY = "MagicNodes"
def apply_cade2(self, model, vae, positive, negative, latent, seed, steps, cfg, denoise,
sampler_name, scheduler, noise_offset, iterations=1, steps_delta=0.0,
cfg_delta=0.0, denoise_delta=0.0, apply_sharpen=False,
apply_upscale=False, apply_ids=False, clip_clean=False,
ids_strength=0.5, upscale_method="lanczos", scale_by=1.2, scale_delta=0.0,
Sharpnes_strenght=0.300, threshold=0.03, latent_compare=False, accumulation="default",
reference_clean=False, reference_image=None, clip_vision=None, ref_preview=224, ref_threshold=0.03, ref_cooldown=1,
onnx_detectors=False, onnx_preview=224, onnx_sensitivity=0.5, onnx_anomaly_gain=1.0,
guidance_mode="RescaleCFG", rescale_multiplier=0.7, momentum_beta=0.0, cfg_curve=0.0, perp_damp=0.0,
use_nag=False, nag_scale=4.0, nag_tau=2.5, nag_alpha=0.25,
use_zero_init=False, zero_init_steps=0,
fdg_low=0.6, fdg_high=1.3, fdg_sigma=1.0, ze_res_zero_steps=2,
ze_adaptive=False, ze_r_switch_hi=0.60, ze_r_switch_lo=0.45,
fdg_low_adaptive=False, fdg_low_min=0.45, fdg_low_max=0.70, fdg_ema_beta=0.80,
onnx_local_guidance=False, onnx_mask_inside=1.0, onnx_mask_outside=1.0, onnx_debug=False,
onnx_kpts_enable=False, onnx_kpts_sigma=2.5, onnx_kpts_gain=1.5, onnx_kpts_conf=0.20,
muse_blend=False, muse_blend_strength=0.5,
eps_scale_enable=False, eps_scale=0.005,
clipseg_enable=False, clipseg_text="", clipseg_preview=224,
clipseg_threshold=0.40, clipseg_blur=7.0, clipseg_dilate=4,
clipseg_gain=1.0, clipseg_blend="fuse", clipseg_ref_gate=False, clipseg_ref_threshold=0.03,
polish_enable=False, polish_keep_low=0.4, polish_edge_lock=0.2, polish_sigma=1.0,
polish_start_after=1, polish_keep_low_ramp=0.2,
preview_downscale=False,
auto_save=False, save_prefix="ComfyUI", save_compress=1,
preset_step="Step 1", custom_override=False):
# Cooperative cancel before any heavy work
model_management.throw_exception_if_processing_interrupted()
# Load base preset for the selected Step. When custom_override is True,
# visible UI controls (top-level) are kept from UI; hidden ones still come from preset.
try:
p = load_preset("mg_cade25", preset_step) if isinstance(preset_step, str) else {}
except Exception:
p = {}
def pv(name, cur, top=False):
return cur if (top and bool(custom_override)) else p.get(name, cur)
seed = int(pv("seed", seed, top=True))
steps = int(pv("steps", steps, top=True))
cfg = float(pv("cfg", cfg, top=True))
denoise = float(pv("denoise", denoise, top=True))
sampler_name = str(pv("sampler_name", sampler_name, top=True))
scheduler = str(pv("scheduler", scheduler, top=True))
iterations = int(pv("iterations", iterations))
# Smart-seed per-step toggle (defaults to True if not present in preset)
smart_seed_enable = bool(pv("smart_seed_enable", True))
smart_seed_k = int(pv("smart_seed_k", 3))
smart_seed_steps = int(pv("smart_seed_steps", 3))
smart_seed_diversity = float(pv("smart_seed_diversity", 0.0))
steps_delta = float(pv("steps_delta", steps_delta))
cfg_delta = float(pv("cfg_delta", cfg_delta))
denoise_delta = float(pv("denoise_delta", denoise_delta))
apply_sharpen = bool(pv("apply_sharpen", apply_sharpen))
apply_upscale = bool(pv("apply_upscale", apply_upscale))
apply_ids = bool(pv("apply_ids", apply_ids))
clip_clean = bool(pv("clip_clean", clip_clean))
ids_strength = float(pv("ids_strength", ids_strength))
upscale_method = str(pv("upscale_method", upscale_method))
scale_by = float(pv("scale_by", scale_by))
scale_delta = float(pv("scale_delta", scale_delta))
noise_offset = float(pv("noise_offset", noise_offset))
threshold = float(pv("threshold", threshold))
Sharpnes_strenght = float(pv("Sharpnes_strenght", Sharpnes_strenght))
latent_compare = bool(pv("latent_compare", latent_compare))
accumulation = str(pv("accumulation", accumulation))
reference_clean = bool(pv("reference_clean", reference_clean))
ref_preview = int(pv("ref_preview", ref_preview))
ref_threshold = float(pv("ref_threshold", ref_threshold))
ref_cooldown = int(pv("ref_cooldown", ref_cooldown))
onnx_detectors = bool(pv("onnx_detectors", onnx_detectors))
onnx_preview = int(pv("onnx_preview", onnx_preview))
onnx_sensitivity = float(pv("onnx_sensitivity", onnx_sensitivity))
onnx_anomaly_gain = float(pv("onnx_anomaly_gain", onnx_anomaly_gain))
guidance_mode = str(pv("guidance_mode", guidance_mode))
rescale_multiplier = float(pv("rescale_multiplier", rescale_multiplier))
momentum_beta = float(pv("momentum_beta", momentum_beta))
cfg_curve = float(pv("cfg_curve", cfg_curve))
perp_damp = float(pv("perp_damp", perp_damp))
use_nag = bool(pv("use_nag", use_nag))
nag_scale = float(pv("nag_scale", nag_scale))
nag_tau = float(pv("nag_tau", nag_tau))
nag_alpha = float(pv("nag_alpha", nag_alpha))
use_zero_init = bool(pv("use_zero_init", use_zero_init))
zero_init_steps = int(pv("zero_init_steps", zero_init_steps))
fdg_low = float(pv("fdg_low", fdg_low))
fdg_high = float(pv("fdg_high", fdg_high))
fdg_sigma = float(pv("fdg_sigma", fdg_sigma))
ze_res_zero_steps = int(pv("ze_res_zero_steps", ze_res_zero_steps))
ze_adaptive = bool(pv("ze_adaptive", ze_adaptive))
ze_r_switch_hi = float(pv("ze_r_switch_hi", ze_r_switch_hi))
ze_r_switch_lo = float(pv("ze_r_switch_lo", ze_r_switch_lo))
fdg_low_adaptive = bool(pv("fdg_low_adaptive", fdg_low_adaptive))
fdg_low_min = float(pv("fdg_low_min", fdg_low_min))
fdg_low_max = float(pv("fdg_low_max", fdg_low_max))
fdg_ema_beta = float(pv("fdg_ema_beta", fdg_ema_beta))
# AQClip-Lite (hidden in Easy UI, controllable via presets)
aqclip_enable = bool(pv("aqclip_enable", False))
aq_tile = int(pv("aq_tile", 32))
aq_stride = int(pv("aq_stride", 16))
aq_alpha = float(pv("aq_alpha", 2.0))
aq_ema_beta = float(pv("aq_ema_beta", 0.85))
midfreq_enable = bool(pv("midfreq_enable", False))
midfreq_gain = float(pv("midfreq_gain", 0.0))
midfreq_sigma_lo = float(pv("midfreq_sigma_lo", 0.8))
midfreq_sigma_hi = float(pv("midfreq_sigma_hi", 2.0))
onnx_local_guidance = bool(pv("onnx_local_guidance", onnx_local_guidance))
onnx_mask_inside = float(pv("onnx_mask_inside", onnx_mask_inside))
onnx_mask_outside = float(pv("onnx_mask_outside", onnx_mask_outside))
onnx_debug = bool(pv("onnx_debug", onnx_debug))
onnx_kpts_enable = bool(pv("onnx_kpts_enable", onnx_kpts_enable))
onnx_kpts_sigma = float(pv("onnx_kpts_sigma", onnx_kpts_sigma))
onnx_kpts_gain = float(pv("onnx_kpts_gain", onnx_kpts_gain))
onnx_kpts_conf = float(pv("onnx_kpts_conf", onnx_kpts_conf))
muse_blend = bool(pv("muse_blend", muse_blend))
muse_blend_strength = float(pv("muse_blend_strength", muse_blend_strength))
eps_scale_enable = bool(pv("eps_scale_enable", eps_scale_enable))
eps_scale = float(pv("eps_scale", eps_scale))
clipseg_enable = bool(pv("clipseg_enable", clipseg_enable))
clipseg_text = str(pv("clipseg_text", clipseg_text, top=True))
clipseg_preview = int(pv("clipseg_preview", clipseg_preview))
clipseg_threshold = float(pv("clipseg_threshold", clipseg_threshold))
clipseg_blur = float(pv("clipseg_blur", clipseg_blur))
clipseg_dilate = int(pv("clipseg_dilate", clipseg_dilate))
clipseg_gain = float(pv("clipseg_gain", clipseg_gain))
clipseg_blend = str(pv("clipseg_blend", clipseg_blend))
clipseg_ref_gate = bool(pv("clipseg_ref_gate", clipseg_ref_gate))
clipseg_ref_threshold = float(pv("clipseg_ref_threshold", clipseg_ref_threshold))
# CFG scheduling (internal-only; configured via presets)
cfg_sched = str(pv("cfg_sched", "off"))
cfg_sched_min = float(pv("cfg_sched_min", max(0.0, cfg * 0.5)))
cfg_sched_max = float(pv("cfg_sched_max", cfg))
cfg_sched_gamma = float(pv("cfg_sched_gamma", 1.5))
cfg_sched_u_pow = float(pv("cfg_sched_u_pow", 1.0))
# VAE decode: allow forcing fp32 output (default false)
vae_decode_fp32 = bool(pv("vae_decode_fp32", False))
# CWN + AGC defaults (hidden in Easy; controlled via presets)
cwn_enable = bool(pv("cwn_enable", True))
alpha_c = float(pv("alpha_c", 1.0))
alpha_u = float(pv("alpha_u", 1.0))
agc_enable = bool(pv("agc_enable", True))
agc_tau = float(pv("agc_tau", 2.8))
# Latent buffer (internal-only; configured via presets)
latent_buffer = bool(pv("latent_buffer", True))
lb_inject = float(pv("lb_inject", 0.25))
lb_ema = float(pv("lb_ema", 0.75))
lb_every = int(pv("lb_every", 1))
lb_anchor_every = int(pv("lb_anchor_every", 6))
lb_masked = bool(pv("lb_masked", True))
lb_rebase_thresh = float(pv("lb_rebase_thresh", 0.10))
lb_rebase_rate = float(pv("lb_rebase_rate", 0.25))
polish_enable = bool(pv("polish_enable", polish_enable))
polish_keep_low = float(pv("polish_keep_low", polish_keep_low))
polish_edge_lock = float(pv("polish_edge_lock", polish_edge_lock))
polish_sigma = float(pv("polish_sigma", polish_sigma))
polish_start_after = int(pv("polish_start_after", polish_start_after))
polish_keep_low_ramp = float(pv("polish_keep_low_ramp", polish_keep_low_ramp))
# CADE Seg: per-step toggle to include CF edges into Seg mask
seg_use_cf_edges = bool(pv("seg_use_cf_edges", True))
# Hard reset of any sticky globals from prior runs
try:
global CURRENT_ONNX_MASK_BCHW, _ONNX_KPTS_ENABLE, _ONNX_KPTS_SIGMA, _ONNX_KPTS_GAIN, _ONNX_KPTS_CONF
CURRENT_ONNX_MASK_BCHW = None
# Reset KPTS toggles to sane defaults; they will be set again if enabled below
_ONNX_KPTS_ENABLE = False
_ONNX_KPTS_SIGMA = 2.5
_ONNX_KPTS_GAIN = 1.5
_ONNX_KPTS_CONF = 0.20
except Exception:
pass
# Align latent channels to VAE/model (e.g., Z_image/FLUX use 16ch latents)
latent = _match_latent_channels(vae, latent, model)
# Harmonize cond token lengths to prevent rare MGHybrid size mismatches
positive = _harmonize_cond_tokens(positive)
negative = _harmonize_cond_tokens(negative)
image = safe_decode(vae, latent, to_fp32=bool(vae_decode_fp32))
# allow user cancel right after initial decode
model_management.throw_exception_if_processing_interrupted()
tuned_steps, tuned_cfg, tuned_denoise = AdaptiveSamplerHelper().tune(
image, steps, cfg, denoise)
current_steps = tuned_steps
current_cfg = tuned_cfg
current_denoise = tuned_denoise
# Work on a detached copy to avoid mutating input latent across runs
try:
current_latent = {"samples": latent["samples"].clone()}
except Exception:
current_latent = {"samples": latent["samples"]}
current_scale = scale_by
# Derive a user-friendly step tag for logs
try:
_ps = str(preset_step)
_num = ''.join(ch for ch in _ps if ch.isdigit())
step_tag = f"Step:{_num}" if _num else _ps
except Exception:
step_tag = str(preset_step)
# Smart seed selection (Sobol + light probing) when effective seed==0 and not in custom override mode
try:
if int(seed) == 0 and not bool(custom_override) and bool(smart_seed_enable):
seed = _smart_seed_select(
model, vae, positive, negative, current_latent,
str(sampler_name), str(scheduler), float(current_cfg), float(current_denoise),
base_seed=0, step_tag=step_tag,
k=int(max(1, smart_seed_k)), probe_steps=int(max(1, smart_seed_steps)),
clip_vision=clip_vision, reference_image=reference_image, clipseg_text=str(clipseg_text),
diversity=float(max(0.0, smart_seed_diversity)))
except Exception as e:
# propagate user cancel; swallow only non-interrupt errors
if isinstance(e, model_management.InterruptProcessingException):
raise
pass
# Visual separation and start marker after seed is finalized
try:
print("")
except Exception:
pass
try:
print(f"\x1b[32m==== {step_tag}, Starting main job ====\x1b[0m")
except Exception:
pass
ref_embed = None
if reference_clean and (clip_vision is not None) and (reference_image is not None):
try:
ref_embed = _encode_clip_image(reference_image, clip_vision, ref_preview)
except Exception:
ref_embed = None
# Pre-disable any lingering NAG patch from previous runs and set PV accumulation for this node
try:
sa_patch.enable_crossattention_nag_patch(False)
except Exception:
pass
prev_accum = getattr(sa_patch, "CURRENT_PV_ACCUM", None)
sa_patch.CURRENT_PV_ACCUM = None if accumulation == "default" else accumulation
# Enable NAG patch if requested
try:
sa_patch.enable_crossattention_nag_patch(bool(use_nag), float(nag_scale), float(nag_tau), float(nag_alpha))
except Exception:
pass
# Enable attention-entropy probe for AQClip Attn-mode (read from preset)
try:
aq_attn = bool(p.get("aq_attn", False)) if isinstance(p, dict) else False
if hasattr(sa_patch, "enable_attention_entropy_capture"):
sa_patch.enable_attention_entropy_capture(aq_attn, max_tokens=1024, max_heads=4)
except Exception:
pass
# Enable KV pruning for self-attention (read from preset)
try:
kv_enable = bool(p.get("kv_prune_enable", False)) if isinstance(p, dict) else False
kv_keep = float(p.get("kv_keep", 0.85)) if isinstance(p, dict) else 0.85
kv_min_tokens = int(p.get("kv_min_tokens", 128)) if isinstance(p, dict) else 128
if hasattr(sa_patch, "set_kv_prune"):
sa_patch.set_kv_prune(kv_enable, kv_keep, kv_min_tokens)
except Exception:
pass
onnx_mask_last = None
try:
with torch.inference_mode():
__cade_noop = 0 # ensure non-empty with-block
# Latent buffer runtime state
lb_state = {"z_ema": None, "anchor": None, "drift_last": None, "ref_dist_last": None}
# Pre-initialize EMA from the incoming latent so that a 2-iteration node already benefits on iter=1
try:
if bool(latent_buffer) and (iterations > 1):
z0 = current_latent.get("samples", None)
if isinstance(z0, torch.Tensor):
lb_state["z_ema"] = z0.clone().detach()
lb_state["anchor"] = z0.clone().detach()
except Exception:
pass
# Preflight: reset sticky state and build external masks once (CPU-pinned)
try:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
pass
pre_mask = None
pre_area = 0.0
# ONNX detectors disabled in Easy: prefer CLIPSeg + edge fusion
onnx_detectors = False
# Build CLIPSeg mask once
if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "":
try:
cmask = _clipseg_build_mask(image, clipseg_text, int(clipseg_preview), float(clipseg_threshold), float(clipseg_blur), int(clipseg_dilate), float(clipseg_gain), None, None, float(clipseg_ref_threshold))
if cmask is not None:
if pre_mask is not None:
pre_mask = _mask_to_like(pre_mask, image)
cmask = _mask_to_like(cmask, image)
if pre_mask is None:
pre_mask = cmask
else:
pre_mask, cmask = _align_mask_pair(pre_mask, cmask)
if clipseg_blend == "replace":
pre_mask = cmask
elif clipseg_blend == "intersect":
pre_mask = (pre_mask * cmask).clamp(0, 1)
else:
pre_mask = (1.0 - (1.0 - pre_mask) * (1.0 - cmask)).clamp(0, 1)
except Exception:
pass
# Edge mask from ControlFusion Step (with depth gating) when enabled; fallback to Sobel
if bool(seg_use_cf_edges):
try:
emask = _build_cf_edge_mask_from_step(image, str(preset_step))
except Exception:
emask = None
if emask is None:
try:
emask = _edge_mask(image, threshold=0.20, blur=1.0)
except Exception:
emask = None
if emask is not None:
if pre_mask is not None:
pre_mask, emask = _align_mask_pair(pre_mask, emask)
pre_mask = emask if pre_mask is None else (1.0 - (1.0 - pre_mask) * (1.0 - emask)).clamp(0, 1)
if pre_mask is not None:
onnx_mask_last = pre_mask
om = pre_mask.movedim(-1, 1)
pre_area = float(om.mean().item())
if bool(onnx_local_guidance):
try:
if 0.02 <= pre_area <= 0.35:
CURRENT_ONNX_MASK_BCHW = om.clamp(0, 1).to(model_management.get_torch_device())
else:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
CURRENT_ONNX_MASK_BCHW = None
try:
del onnx_mask
except Exception:
pass
try:
del om
except Exception:
pass
try:
del img_preview
except Exception:
pass
# One-time damping from area (disabled by default)
if False:
try:
if pre_area > 0.005:
damp = 1.0 - min(0.04, 0.008 + pre_area * 0.02)
current_denoise = max(0.10, current_denoise * damp)
current_cfg = max(1.0, current_cfg * (1.0 - 0.003))
except Exception:
pass
# Preflight symmetry disabled (kept for experiments only)
if False:
try:
img0 = image
sym_mask = _clipseg_build_mask(img0, "face | head | torso | shoulders", preview=int(clipseg_preview), threshold=0.45, blur=5.0, dilate=2, gain=1.0)
if sym_mask is not None:
img_sym = _soft_symmetry_blend(img0, sym_mask, alpha=0.012, lp_sigma=1.75)
current_latent = {"samples": safe_encode(vae, img_sym)}
image = img_sym
except Exception:
pass
# Compact status
try:
provs = []
if _ONNX_RT is not None:
provs = list(_ONNX_RT.get_available_providers())
clipseg_status = "on" if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "" else "off"
kpts = f"kpts={'on' if bool(onnx_kpts_enable) else 'off'} sigma={float(onnx_kpts_sigma):.2f} gain={float(onnx_kpts_gain):.2f} conf={float(onnx_kpts_conf):.2f}"
# print preflight info only in debug sessions (muted by default)
if False:
print(f"[CADE2.5][preflight] onnx_sessions={len(_ONNX_SESS)} providers={provs if provs else ['CPU']} clipseg={clipseg_status} device={'cpu' if _CLIPSEG_FORCE_CPU else _CLIPSEG_DEV} mask_area={pre_area:.4f} {kpts}")
except Exception:
pass
# Freeze per-iteration external mask rebuild
onnx_detectors = False
clipseg_enable = False
# Depth gate cache for micro-detail injection (reuse per resolution)
depth_gate_cache = {"size": None, "mask": None}
# Prepare guided sampler once per node run to avoid cloning model each iteration
sampler_model = _wrap_model_with_guidance(
model, guidance_mode, rescale_multiplier, momentum_beta, cfg_curve, perp_damp,
use_zero_init=bool(use_zero_init), zero_init_steps=int(zero_init_steps),
fdg_low=float(fdg_low), fdg_high=float(fdg_high), fdg_sigma=float(fdg_sigma),
midfreq_enable=bool(midfreq_enable), midfreq_gain=float(midfreq_gain), midfreq_sigma_lo=float(midfreq_sigma_lo), midfreq_sigma_hi=float(midfreq_sigma_hi),
ze_zero_steps=int(ze_res_zero_steps),
ze_adaptive=bool(ze_adaptive), ze_r_switch_hi=float(ze_r_switch_hi), ze_r_switch_lo=float(ze_r_switch_lo),
fdg_low_adaptive=bool(fdg_low_adaptive), fdg_low_min=float(fdg_low_min), fdg_low_max=float(fdg_low_max), fdg_ema_beta=float(fdg_ema_beta),
use_local_mask=bool(onnx_local_guidance), mask_inside=float(onnx_mask_inside), mask_outside=float(onnx_mask_outside),
mahiro_plus_enable=bool(muse_blend), mahiro_plus_strength=float(muse_blend_strength),
eps_scale_enable=bool(eps_scale_enable), eps_scale=float(eps_scale),
cfg_sched_type=str(cfg_sched), cfg_sched_min=float(cfg_sched_min), cfg_sched_max=float(cfg_sched_max),
cfg_sched_gamma=float(cfg_sched_gamma), cfg_sched_u_pow=float(cfg_sched_u_pow),
cwn_enable=bool(cwn_enable), alpha_c=float(alpha_c), alpha_u=float(alpha_u),
agc_enable=bool(agc_enable), agc_tau=float(agc_tau),
nag_fb_enable=bool(use_nag), nag_fb_scale=float(nag_scale), nag_fb_tau=float(nag_tau), nag_fb_alpha=float(nag_alpha)
)
# check once more right before the loop starts
model_management.throw_exception_if_processing_interrupted()
for i in range(iterations):
# cooperative cancel at the start of each iteration
model_management.throw_exception_if_processing_interrupted()
if i % 2 == 0:
clear_gpu_and_ram_cache()
# Reset guidance internal state so each iteration starts clean
try:
if hasattr(sampler_model, "mg_guidance_reset"):
sampler_model.mg_guidance_reset()
except Exception:
pass
prev_samples = current_latent["samples"].clone().detach()
iter_seed = seed + i * 7777
if noise_offset > 0.0:
# Deterministic noise offset tied to iter_seed
fade = 1.0 - (i / max(1, iterations))
try:
gen = torch.Generator(device='cpu')
except Exception:
gen = torch.Generator()
gen.manual_seed(int(iter_seed) & 0xFFFFFFFF)
eps = torch.randn(
size=current_latent["samples"].shape,
dtype=current_latent["samples"].dtype,
device='cpu',
generator=gen,
).to(current_latent["samples"].device)
current_latent["samples"] = current_latent["samples"] + (noise_offset * fade) * eps
try:
del eps
except Exception:
pass
# Pre-sampling ONNX detectors: handled once below (kept compact)
# Pre-sampling ONNX detectors (build mask and optionally adjust params for this iteration)
if onnx_detectors and (i % max(1, 1) == 0):
try:
import os
models_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "models")
img_preview = safe_decode(vae, current_latent, to_fp32=bool(vae_decode_fp32))
# Set toggles for this iteration
globals()["_ONNX_DEBUG"] = bool(onnx_debug)
globals()["_ONNX_COUNT_DEBUG"] = True # force counts ON for debugging session
globals()["_ONNX_KPTS_ENABLE"] = bool(onnx_kpts_enable)
globals()["_ONNX_KPTS_SIGMA"] = float(onnx_kpts_sigma)
globals()["_ONNX_KPTS_GAIN"] = float(onnx_kpts_gain)
globals()["_ONNX_KPTS_CONF"] = float(onnx_kpts_conf)
onnx_mask = _onnx_build_mask(img_preview, int(onnx_preview), float(onnx_sensitivity), models_dir, float(onnx_anomaly_gain))
if onnx_mask is not None:
onnx_mask_last = onnx_mask
om = onnx_mask.movedim(-1, 1)
area = float(om.mean().item())
if bool(onnx_debug):
print(f"[CADE2.5][ONNX] iter={i} mask_area={area:.4f}")
if area > 0.005:
damp = 1.0 - min(0.25, 0.06 + onnx_sensitivity * 0.05 + area * 0.25)
current_denoise = max(0.10, current_denoise * damp)
current_cfg = max(1.0, current_cfg * (1.0 - 0.015 * onnx_sensitivity))
# Prepare spatial mask for cfg_func if requested
if bool(onnx_local_guidance):
# store BCHW mask in global for this iteration (only for reasonable areas)
if 0.02 <= area <= 0.35:
CURRENT_ONNX_MASK_BCHW = om.clamp(0, 1).to(model_management.get_torch_device())
else:
CURRENT_ONNX_MASK_BCHW = None
else:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
CURRENT_ONNX_MASK_BCHW = None
# CF edge mask (from current image) and fusion (only when enabled)
if bool(seg_use_cf_edges):
try:
img_prev2 = safe_decode(vae, current_latent, to_fp32=bool(vae_decode_fp32))
em2 = _build_cf_edge_mask_from_step(img_prev2, str(preset_step))
if em2 is not None:
if onnx_mask_last is None:
onnx_mask_last = em2
else:
onnx_mask_last, em2 = _align_mask_pair(onnx_mask_last, em2)
onnx_mask_last = (1.0 - (1.0 - onnx_mask_last) * (1.0 - em2)).clamp(0, 1)
om = onnx_mask_last.movedim(-1, 1)
area = float(om.mean().item())
if bool(onnx_local_guidance):
if 0.02 <= area <= 0.35:
CURRENT_ONNX_MASK_BCHW = om.clamp(0, 1).to(model_management.get_torch_device())
else:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
pass
# CLIPSeg mask (optional) and fusion with ONNX
try:
if bool(clipseg_enable) and isinstance(clipseg_text, str) and clipseg_text.strip() != "":
cmask = _clipseg_build_mask(img_prev2, clipseg_text, int(clipseg_preview), float(clipseg_threshold), float(clipseg_blur), int(clipseg_dilate), float(clipseg_gain), ref_embed if bool(clipseg_ref_gate) else None, clip_vision if bool(clipseg_ref_gate) else None, float(clipseg_ref_threshold))
if cmask is not None:
if onnx_mask_last is None:
fused = cmask
else:
if clipseg_blend == "replace":
fused = cmask
elif clipseg_blend == "intersect":
onnx_mask_last, cmask = _align_mask_pair(onnx_mask_last, cmask)
fused = (onnx_mask_last * cmask).clamp(0, 1)
else:
onnx_mask_last, cmask = _align_mask_pair(onnx_mask_last, cmask)
fused = (1.0 - (1.0 - onnx_mask_last) * (1.0 - cmask)).clamp(0, 1)
onnx_mask_last = fused
om = fused.movedim(-1, 1)
area = float(om.mean().item())
if bool(onnx_debug):
print(f"[CADE2.5][MASK] iter={i} mask_area={area:.4f}")
if area > 0.005:
damp = 1.0 - min(0.10, 0.02 + float(onnx_sensitivity) * 0.02 + area * 0.08)
current_denoise = max(0.10, current_denoise * damp)
current_cfg = max(1.0, current_cfg * (1.0 - 0.008 * float(onnx_sensitivity)))
if bool(onnx_local_guidance):
if 0.02 <= area <= 0.35:
CURRENT_ONNX_MASK_BCHW = om.clamp(0, 1).to(model_management.get_torch_device())
else:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
pass
try:
del img_prev2
except Exception:
pass
try:
del em2
except Exception:
pass
try:
del cmask
del fused
del om
except Exception:
pass
# Latent buffer: pre-sampling injection
if bool(latent_buffer) and (iterations > 1) and (i > 0) and (i % max(1, lb_every) == 0):
try:
z = current_latent["samples"]
if lb_state["z_ema"] is None or tuple(lb_state["z_ema"].shape) != tuple(z.shape):
lb_state["z_ema"] = z.clone().detach()
inj = float(max(0.0, min(0.95, lb_inject)))
# optional boost when far from reference (uses last known distance)
try:
if (ref_embed is not None) and (lb_state.get("ref_dist_last") is not None) and (lb_state["ref_dist_last"] > float(ref_threshold)):
inj = min(0.95, inj * (1.0 + min(0.5, (lb_state["ref_dist_last"] - float(ref_threshold)) * 0.75)))
except Exception:
pass
z_ema = lb_state["z_ema"]
if bool(lb_masked) and (onnx_mask_last is not None):
m = onnx_mask_last.movedim(-1, 1)
m = F.interpolate(m, size=(z.shape[-2], z.shape[-1]), mode='bilinear', align_corners=False).clamp(0, 1)
m = m.expand(-1, z.shape[1], -1, -1)
z = z * (1.0 - inj * m) + z_ema * (inj * m)
else:
z = z * (1.0 - inj) + z_ema * inj
current_latent["samples"] = z
except Exception:
pass
# Sampler model prepared once above; reused across iterations (no-op here)
sampler_model = sampler_model
# Local best-of-2 in ROI (hands/face), only on early iteration to limit overhead
try:
do_local_refine = False # disable local best-of-2 by default
if do_local_refine:
img_roi = safe_decode(vae, current_latent, to_fp32=bool(vae_decode_fp32))
roi = _clipseg_build_mask(img_roi, "hand | hands | face", preview=max(192, int(clipseg_preview//2)), threshold=0.40, blur=5.0, dilate=2, gain=1.0)
if roi is None and onnx_mask_last is not None:
roi = torch.clamp(onnx_mask_last, 0.0, 1.0)
if roi is not None:
# Area gating
try:
ra = float(roi.mean().item())
except Exception:
ra = 0.0
if not (0.02 <= ra <= 0.15):
raise Exception("ROI area out of range; skip local_refine")
# Light erosion to avoid halo influence
try:
m = roi[..., 0].unsqueeze(1)
# disable erosion effect (kernel=1)
ero = 1.0 - F.max_pool2d(1.0 - m, kernel_size=1, stride=1, padding=0)
roi = ero.clamp(0, 1).movedim(1, -1)
except Exception:
pass
# micro sampling params
micro_steps = int(max(2, min(4, round(max(1, current_steps) * 0.05))))
micro_denoise = float(min(0.22, max(0.10, current_denoise * 0.30)))
s1 = int((iter_seed ^ 0x9E3779B1) & 0xFFFFFFFFFFFFFFFF)
s2 = int((iter_seed ^ 0x85EBCA77) & 0xFFFFFFFFFFFFFFFF)
# Candidate A
lat_in_a = {"samples": current_latent["samples"].clone()}
lat_a, = nodes.common_ksampler(
sampler_model, s1, micro_steps, current_cfg, sampler_name, scheduler,
positive, negative, lat_in_a, denoise=micro_denoise)
img_a = safe_decode(vae, lat_a, to_fp32=bool(vae_decode_fp32))
# Candidate B
lat_in_b = {"samples": current_latent["samples"].clone()}
lat_b, = nodes.common_ksampler(
sampler_model, s2, micro_steps, current_cfg, sampler_name, scheduler,
positive, negative, lat_in_b, denoise=micro_denoise)
img_b = safe_decode(vae, lat_b, to_fp32=bool(vae_decode_fp32))
# Score inside ROI
def _roi_stats(img, roi_mask):
try:
m = roi_mask[..., 0].clamp(0, 1)
R, G, Bc = img[..., 0], img[..., 1], img[..., 2]
lum = (0.2126 * R + 0.7152 * G + 0.0722 * Bc)
# edges
kx = torch.tensor([[-1,0,1],[-2,0,2],[-1,0,1]], device=img.device, dtype=img.dtype).view(1,1,3,3)
ky = torch.tensor([[-1,-2,-1],[0,0,0],[1,2,1]], device=img.device, dtype=img.dtype).view(1,1,3,3)
gx = F.conv2d(lum.unsqueeze(1), kx, padding=1)
gy = F.conv2d(lum.unsqueeze(1), ky, padding=1)
g = torch.sqrt(gx*gx + gy*gy).squeeze(1)
wmean = (g*m).mean() / (m.mean()+1e-6)
# speckles
V = torch.maximum(R, torch.maximum(G, Bc))
mi = torch.minimum(R, torch.minimum(G, Bc))
S = 1.0 - (mi / (V + 1e-6))
cand = (V > 0.98) & (S < 0.12)
speck = (cand.float()*m).mean() / (m.mean()+1e-6)
lmean = (lum*m).mean() / (m.mean()+1e-6)
return float(wmean.item()), float(speck.item()), float(lmean.item())
except Exception:
return 0.0, 0.5, 0.5
ed_a, sp_a, lm_a = _roi_stats(img_a, roi)
ed_b, sp_b, lm_b = _roi_stats(img_b, roi)
edge_target = 0.08
score_a = -abs(ed_a - edge_target) - 0.8*sp_a - 0.10*abs(lm_a - 0.5)
score_b = -abs(ed_b - edge_target) - 0.8*sp_b - 0.10*abs(lm_b - 0.5)
# Optional CLIP-Vision ref boost
if ref_embed is not None and clip_vision is not None:
try:
emb_a = _encode_clip_image(img_a, clip_vision, target_res=224)
emb_b = _encode_clip_image(img_b, clip_vision, target_res=224)
sim_a = float((emb_a * ref_embed).sum(dim=-1).mean().clamp(-1.0, 1.0).item())
sim_b = float((emb_b * ref_embed).sum(dim=-1).mean().clamp(-1.0, 1.0).item())
score_a += 0.25 * (0.5*(sim_a+1.0))
score_b += 0.25 * (0.5*(sim_b+1.0))
except Exception:
pass
if score_b > score_a:
current_latent = lat_b
else:
current_latent = lat_a
try:
del img_roi
except Exception:
pass
try:
del roi
except Exception:
pass
try:
del lat_in_a
del lat_a
del img_a
except Exception:
pass
try:
del lat_in_b
del lat_b
del img_b
except Exception:
pass
except Exception:
pass
if str(scheduler) == "MGHybrid":
try:
# Build ZeSmart hybrid sigmas with safe defaults
sigmas = _build_hybrid_sigmas(
sampler_model, int(current_steps), str(sampler_name), "hybrid",
mix=0.5, denoise=float(current_denoise), jitter=0.01, seed=int(iter_seed),
_debug=False, tail_smooth=0.15, auto_hybrid_tail=True, auto_tail_strength=0.4,
)
# Prepare latent + noise like in MG_ZeSmartSampler
lat_img = current_latent["samples"]
lat_img = _match_latent_channels(vae, {"samples": lat_img}, sampler_model)["samples"]
lat_img = _sample.fix_empty_latent_channels(sampler_model, lat_img)
batch_inds = current_latent.get("batch_index", None)
noise = _sample.prepare_noise(lat_img, int(iter_seed), batch_inds)
noise_mask = current_latent.get("noise_mask", None)
callback = _wrap_interruptible_callback(sampler_model, int(current_steps))
# cooperative cancel just before entering sampler
model_management.throw_exception_if_processing_interrupted()
disable_pbar = not _utils.PROGRESS_BAR_ENABLED
sampler_obj = _samplers.sampler_object(str(sampler_name))
samples = _sample.sample_custom(
sampler_model, noise, float(current_cfg), sampler_obj, sigmas,
positive, negative, lat_img,
noise_mask=noise_mask, callback=callback,
disable_pbar=disable_pbar, seed=int(iter_seed)
)
current_latent = {**current_latent}
current_latent["samples"] = samples
except Exception as e:
try:
print(f"[CADE2.5][MGHybrid][debug] sigmas={list(sigmas.shape)} lat={list(current_latent['samples'].shape)}")
print(_summarize_conds("pos", positive))
print(_summarize_conds("neg", negative))
except Exception:
pass
try:
traceback.print_exc()
except Exception:
pass
# Before any fallback, propagate user cancel if set
try:
model_management.throw_exception_if_processing_interrupted()
except Exception:
globals()["_MG_CANCEL_REQUESTED"] = False
raise
# Do not swallow user interruption; also check sentinel just in case
if isinstance(e, model_management.InterruptProcessingException) or globals().get("_MG_CANCEL_REQUESTED", False):
globals()["_MG_CANCEL_REQUESTED"] = False
raise
# Fallback to original path if anything goes wrong
print(f"[CADE2.5][MGHybrid] fallback to common_ksampler due to: {e}")
current_latent, = _interruptible_ksampler(
sampler_model, iter_seed, int(current_steps), current_cfg, sampler_name, _scheduler_names()[0],
positive, negative, current_latent, denoise=current_denoise)
else:
current_latent, = _interruptible_ksampler(
sampler_model, iter_seed, int(current_steps), current_cfg, sampler_name, scheduler,
positive, negative, current_latent, denoise=current_denoise)
# cooperative cancel immediately after sampling
model_management.throw_exception_if_processing_interrupted()
# Release heavy temporaries from sampler path
try:
del lat_img
except Exception:
pass
try:
del noise
except Exception:
pass
try:
del noise_mask
except Exception:
pass
try:
del callback
except Exception:
pass
try:
del sampler_obj
except Exception:
pass
try:
del sigmas
except Exception:
pass
# Latent buffer: post-sampling EMA update and drift measure
try:
z_now = current_latent["samples"].detach()
if lb_state["z_ema"] is None or tuple(lb_state["z_ema"].shape) != tuple(z_now.shape):
lb_state["z_ema"] = z_now.clone()
lb_state["anchor"] = z_now.clone()
else:
lb = float(max(0.0, min(0.99, lb_ema)))
lb_state["z_ema"] = lb * lb_state["z_ema"] + (1.0 - lb) * z_now
if int(lb_anchor_every) > 0 and ((i + 1) % int(lb_anchor_every) == 0):
lb_state["anchor"] = lb_state["z_ema"].clone()
except Exception:
pass
# local RMS drift (independent of UI)
try:
_cur = current_latent["samples"]
_prev = prev_samples
if _prev.device != _cur.device:
_prev = _prev.to(_cur.device)
if _prev.dtype != _cur.dtype:
_prev = _prev.to(dtype=_cur.dtype)
_diff = _cur - _prev
lb_state["drift_last"] = float(torch.sqrt(torch.mean(_diff * _diff)).item())
except Exception:
pass
if bool(latent_compare):
_cur = current_latent["samples"]
_prev = prev_samples
try:
if _prev.device != _cur.device:
_prev = _prev.to(_cur.device)
if _prev.dtype != _cur.dtype:
_prev = _prev.to(dtype=_cur.dtype)
except Exception:
pass
latent_diff = _cur - _prev
rms = torch.sqrt(torch.mean(latent_diff * latent_diff))
drift = float(rms.item())
if drift > float(threshold):
overshoot = max(0.0, drift - float(threshold))
damp = 1.0 - min(0.15, overshoot * 2.0)
current_denoise = max(0.20, current_denoise * damp)
cfg_damp = 0.997 if damp > 0.9 else 0.99
current_cfg = max(1.0, current_cfg * cfg_damp)
# Latent buffer: optional rebase toward anchor on overshoot
if bool(latent_buffer) and (iterations > 1) and (lb_state.get("anchor") is not None):
try:
dval = lb_state.get("drift_last", None)
if (dval is not None) and (dval > float(lb_rebase_thresh)):
rb = float(max(0.0, min(1.0, lb_rebase_rate)))
z = current_latent["samples"]
a = lb_state["anchor"]
if bool(lb_masked) and (onnx_mask_last is not None):
m = onnx_mask_last.movedim(-1, 1)
m = F.interpolate(m, size=(z.shape[-2], z.shape[-1]), mode='bilinear', align_corners=False).clamp(0, 1)
m = m.expand(-1, z.shape[1], -1, -1)
z = z * (1.0 - rb * m) + a * (rb * m)
else:
z = z * (1.0 - rb) + a * rb
current_latent["samples"] = z
except Exception:
pass
try:
del prev_samples
except Exception:
pass
# AQClip-Lite: adaptive soft clipping in latent space (before decode)
try:
if bool(aqclip_enable):
if 'aq_state' not in locals():
aq_state = None
H_override = None
try:
if bool(aq_attn) and hasattr(sa_patch, "get_attention_entropy_map"):
Hm = sa_patch.get_attention_entropy_map(clear=False)
if Hm is not None:
H_override = F.interpolate(Hm, size=(current_latent["samples"].shape[-2], current_latent["samples"].shape[-1]), mode="bilinear", align_corners=False)
except Exception:
H_override = None
z_new, aq_state = _aqclip_lite(
current_latent["samples"],
tile=int(aq_tile), stride=int(aq_stride),
alpha=float(aq_alpha), ema_state=aq_state, ema_beta=float(aq_ema_beta),
H_override=H_override,
)
current_latent["samples"] = z_new
try:
del H_override
except Exception:
pass
try:
del Hm
except Exception:
pass
except Exception:
pass
image = safe_decode(vae, current_latent, to_fp32=bool(vae_decode_fp32))
# and again after decode before post-processing
model_management.throw_exception_if_processing_interrupted()
# Polish mode: keep global form (low frequencies) from reference while letting details refine
if bool(polish_enable) and (i >= int(polish_start_after)):
try:
# Prepare tensors
img = image
ref = reference_image if (reference_image is not None) else img
if ref.shape[1] != img.shape[1] or ref.shape[2] != img.shape[2]:
# resize reference to match current image
ref_n = ref.movedim(-1, 1)
ref_n = F.interpolate(ref_n, size=(img.shape[1], img.shape[2]), mode='bilinear', align_corners=False)
ref = ref_n.movedim(1, -1)
x = img.movedim(-1, 1)
r = ref.movedim(-1, 1)
# Low/high split via Gaussian blur
rad = max(1, int(round(float(polish_sigma) * 2)))
low_x = _gaussian_blur_nchw(x, sigma=float(polish_sigma), radius=rad)
low_r = _gaussian_blur_nchw(r, sigma=float(polish_sigma), radius=rad)
high_x = x - low_x
# Mix low from reference and current with ramp
# a starts from polish_keep_low_ramp and linearly ramps to polish_keep_low over remaining iterations
try:
denom = max(1, int(iterations) - int(polish_start_after))
t = max(0.0, min(1.0, (i - int(polish_start_after)) / denom))
except Exception:
t = 1.0
a0 = float(polish_keep_low_ramp)
at = float(polish_keep_low)
a = a0 + (at - a0) * t
low_mix = low_r * a + low_x * (1.0 - a)
new = low_mix + high_x
# Micro-detail injection on tail: very light HF boost gated by edges+depth
try:
phase = (i + 1) / max(1, int(iterations))
ramp = max(0.0, min(1.0, (phase - 0.70) / 0.30))
if ramp > 0.0:
micro = x - _gaussian_blur_nchw(x, sigma=0.6, radius=1)
gray = x.mean(dim=1, keepdim=True)
sobel_x = torch.tensor([[[-1,0,1],[-2,0,2],[-1,0,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1)
sobel_y = torch.tensor([[[-1,-2,-1],[0,0,0],[1,2,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1)
gx = F.conv2d(gray, sobel_x, padding=1)
gy = F.conv2d(gray, sobel_y, padding=1)
mag = torch.sqrt(gx*gx + gy*gy)
m_edge = (mag - mag.amin()) / (mag.amax() - mag.amin() + 1e-8)
g_edge = (1.0 - m_edge).clamp(0.0, 1.0).pow(0.65)
try:
sz = (int(img.shape[1]), int(img.shape[2]))
if depth_gate_cache.get("size") != sz or depth_gate_cache.get("mask") is None:
model_path = os.path.join(os.path.dirname(__file__), '..', 'depth-anything', 'depth_anything_v2_vitl.pth')
dm = _cf_build_depth_map(img, res=512, model_path=model_path, hires_mode=True)
depth_gate_cache = {"size": sz, "mask": dm}
dm = depth_gate_cache.get("mask")
if dm is not None:
g_depth = (dm.movedim(-1, 1).clamp(0,1)) ** 1.35
else:
g_depth = torch.ones_like(g_edge)
except Exception:
g_depth = torch.ones_like(g_edge)
g = (g_edge * g_depth).clamp(0.0, 1.0)
micro_boost = 0.018 * ramp
new = new + micro_boost * (micro * g)
except Exception:
pass
# Edge-lock: protect edges from drift by biasing toward low_mix along edges
el = float(polish_edge_lock)
if el > 1e-6:
# Sobel edge magnitude on grayscale
gray = x.mean(dim=1, keepdim=True)
sobel_x = torch.tensor([[[-1,0,1],[-2,0,2],[-1,0,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1)
sobel_y = torch.tensor([[[-1,-2,-1],[0,0,0],[1,2,1]]], dtype=gray.dtype, device=gray.device).unsqueeze(1)
gx = F.conv2d(gray, sobel_x, padding=1)
gy = F.conv2d(gray, sobel_y, padding=1)
mag = torch.sqrt(gx*gx + gy*gy)
m = (mag - mag.amin()) / (mag.amax() - mag.amin() + 1e-8)
# Blend toward low_mix near edges
new = new * (1.0 - el*m) + (low_mix) * (el*m)
img2 = new.movedim(1, -1).clamp(0,1)
# Feed back to latent for next steps
current_latent = {"samples": safe_encode(vae, img2)}
image = img2
try:
del x
del r
del low_x
del low_r
del high_x
del low_mix
del new
del micro
del gray
del sobel_x
del sobel_y
del gx
del gy
del mag
del m_edge
del g_depth
del g
del ref_n
del ref
del img
except Exception:
pass
try:
clear_gpu_and_ram_cache()
except Exception:
pass
except Exception:
pass
# ONNX detectors (beta): fuse hands/face/pose mask if available (post-sampling; skip if already set)
if onnx_detectors and (i % max(1, 1) == 0) and (onnx_mask_last is None):
try:
import os
models_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), "models")
globals()["_ONNX_DEBUG"] = False
globals()["_ONNX_KPTS_ENABLE"] = bool(onnx_kpts_enable)
globals()["_ONNX_KPTS_SIGMA"] = float(onnx_kpts_sigma)
globals()["_ONNX_KPTS_GAIN"] = float(onnx_kpts_gain)
globals()["_ONNX_KPTS_CONF"] = float(onnx_kpts_conf)
onnx_mask = _onnx_build_mask(image, int(onnx_preview), float(onnx_sensitivity), models_dir, float(onnx_anomaly_gain))
if onnx_mask is not None:
onnx_mask_last = onnx_mask
om = onnx_mask.movedim(-1,1)
area = float(om.mean().item())
# verbose post-mask log removed; keep single compact log above
if area > 0.005:
damp = 1.0 - min(0.25, 0.06 + onnx_sensitivity*0.05 + area*0.25)
current_denoise = max(0.10, current_denoise * damp)
current_cfg = max(1.0, current_cfg * (1.0 - 0.015*onnx_sensitivity))
except Exception:
pass
if reference_clean and (ref_embed is not None) and (i % max(1, ref_cooldown) == 0):
try:
cur_embed = _encode_clip_image(image, clip_vision, ref_preview)
dist = _clip_cosine_distance(cur_embed, ref_embed)
if dist > ref_threshold:
current_denoise = max(0.10, current_denoise * 0.9)
current_cfg = max(1.0, current_cfg * 0.99)
# store for next-iter latent buffer injection boost
try:
lb_state["ref_dist_last"] = float(dist)
except Exception:
pass
except Exception:
pass
if apply_upscale and current_scale != 1.0:
current_latent, image = MagicUpscaleModule().process_upscale(
current_latent, vae, upscale_method, current_scale)
# After upscale at large sizes, add a tiny HF sprinkle gated by edges+depth
try:
H, W = int(image.shape[1]), int(image.shape[2])
if max(H, W) > 1536:
# Simple BHWC blur
def _gb_bhwc(im: torch.Tensor, radius: float, sigma: float) -> torch.Tensor:
if radius <= 0.0:
return im
pad = int(max(1, round(radius)))
ksz = pad * 2 + 1
k = _gaussian_kernel(ksz, sigma, device=im.device).to(dtype=im.dtype)
k = k.unsqueeze(0).unsqueeze(0)
b, h, w, c = im.shape
xch = im.permute(0, 3, 1, 2)
y = F.conv2d(F.pad(xch, (pad, pad, pad, pad), mode='reflect'), k.repeat(c, 1, 1, 1), groups=c)
return y.permute(0, 2, 3, 1)
blur = _gb_bhwc(image, radius=1.0, sigma=0.8)
hf = (image - blur).clamp(-1, 1)
lum = (0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2])
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=lum.device, dtype=lum.dtype).view(1, 1, 3, 3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=lum.device, dtype=lum.dtype).view(1, 1, 3, 3)
g = torch.sqrt(F.conv2d(lum.unsqueeze(1), kx, padding=1)**2 + F.conv2d(lum.unsqueeze(1), ky, padding=1)**2).squeeze(1)
m = (g - g.amin()) / (g.amax() - g.amin() + 1e-8)
g_edge = (1.0 - m).clamp(0,1).pow(0.5).unsqueeze(-1)
try:
sz = (H, W)
if depth_gate_cache.get("size") != sz or depth_gate_cache.get("mask") is None:
model_path = os.path.join(os.path.dirname(__file__), '..', 'depth-anything', 'depth_anything_v2_vitl.pth')
dm = _cf_build_depth_map(image, res=512, model_path=model_path, hires_mode=True)
depth_gate_cache = {"size": sz, "mask": dm}
dm = depth_gate_cache.get("mask")
if dm is not None:
g_depth = dm.clamp(0,1) ** 1.35
else:
g_depth = torch.ones_like(g_edge)
except Exception:
g_depth = torch.ones_like(g_edge)
g_tot = (g_edge * g_depth).clamp(0,1)
image = (image + 0.045 * hf * g_tot).clamp(0,1)
except Exception:
pass
current_cfg = max(4.0, current_cfg * (1.0 / current_scale))
current_denoise = max(0.15, current_denoise * (1.0 / current_scale))
current_steps = max(1, current_steps - steps_delta)
current_cfg = max(0.0, current_cfg - cfg_delta)
current_denoise = max(0.0, current_denoise - denoise_delta)
current_scale = max(1.0, current_scale - scale_delta)
if apply_upscale and current_scale != 1.0 and max(image.shape[1:3]) > 1024:
current_latent = {"samples": safe_encode(vae, image)}
finally:
# Always disable NAG patch and clear local mask, even on errors
try:
sa_patch.enable_crossattention_nag_patch(False)
except Exception:
pass
# Turn off attention-entropy probe (AQClip Attn-mode) to avoid holding last maps
try:
if hasattr(sa_patch, "enable_attention_entropy_capture"):
sa_patch.enable_attention_entropy_capture(False)
except Exception:
pass
# Disable KV pruning as well (avoid leaking state)
try:
if hasattr(sa_patch, "set_kv_prune"):
sa_patch.set_kv_prune(False, 1.0, 128)
except Exception:
pass
try:
sa_patch.CURRENT_PV_ACCUM = prev_accum
except Exception:
pass
try:
CURRENT_ONNX_MASK_BCHW = None
except Exception:
pass
try:
globals()["_MG_CANCEL_REQUESTED"] = False
clear_gpu_and_ram_cache()
except Exception:
pass
# best-effort cache cleanup on cancel or error
try:
clear_gpu_and_ram_cache()
except Exception:
pass
if apply_ids:
image, = IntelligentDetailStabilizer().stabilize(image, ids_strength)
if apply_sharpen:
image, = _sharpen_image(image, 2, 1.0, Sharpnes_strenght)
# ONNX mask preview as IMAGE (RGB)
if onnx_mask_last is None:
onnx_mask_last = torch.zeros((image.shape[0], image.shape[1], image.shape[2], 1), device=image.device, dtype=image.dtype)
onnx_mask_img = onnx_mask_last.repeat(1, 1, 1, 3).clamp(0, 1)
# Final pass: remove isolated hot whites ("fireflies") without touching real edges/highlights 6.0/9.0, 0.05
try:
image = _despeckle_fireflies(image, thr=0.998, max_iso=4.0/9.0, grad_gate=0.15)
except Exception:
pass
# Under-the-hood preview downscale for UI/output IMAGE to cap RAM during save/preview
preview_downscale = False # hard-coded default (can be toggled here if needed)
try:
if bool(preview_downscale):
B, H, W, C = image.shape
max_side = max(int(H), int(W))
cap = 1920
if max_side > cap:
scale = float(cap) / float(max_side)
nh = max(1, int(round(H * scale)))
nw = max(1, int(round(W * scale)))
x = image.movedim(-1, 1)
x = F.interpolate(x, size=(nh, nw), mode='bilinear', align_corners=False)
image = x.movedim(1, -1).clamp(0, 1).to(dtype=image.dtype)
except Exception:
pass
# Optional: save from node with low PNG compress to reduce RAM spike; ignore UI wiring
try:
if bool(auto_save):
from comfy_api.latest._ui import ImageSaveHelper, FolderType
_ = ImageSaveHelper.save_images(
[image], filename_prefix=str(save_prefix), folder_type=FolderType.output,
cls=CADEEasyUI, compress_level=int(save_compress))
except Exception:
pass
return current_latent, image, int(current_steps), float(current_cfg), float(current_denoise), onnx_mask_img
# === Easy UI wrapper: show only top-level controls ===
class CADEEasyUI(ComfyAdaptiveDetailEnhancer25):
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"preset_step": (["Step 1", "Step 2", "Step 3", "Step 4"], {"default": "Step 1", "tooltip": "Choose the Step preset. Toggle Custom below to apply UI values; otherwise Step preset values are used."}),
"custom": ("BOOLEAN", {"default": False, "tooltip": "Custom override: when enabled, your UI values override the selected Step for visible controls; hidden parameters still come from the Step preset."}),
"model": ("MODEL", {}),
"positive": ("CONDITIONING", {}),
"negative": ("CONDITIONING", {}),
"vae": ("VAE", {}),
"latent": ("LATENT", {}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "control_after_generate": True, "tooltip": "Seed 0 = SmartSeed (Sobol + light probe). Non?zero = fixed seed (deterministic)."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.0001}),
"sampler_name": (_sampler_names(), {"default": _sampler_names()[0]}),
"scheduler": (_scheduler_names(), {"default": "MGHybrid"}),
},
"optional": {
# Reference inputs must remain available in Easy
"reference_image": ("IMAGE", {}),
"clip_vision": ("CLIP_VISION", {}),
# CLIPSeg prompt
"clipseg_text": ("STRING", {"default": "", "multiline": False, "tooltip": "This field tells what the step should focus on (e.g., hand, feet, face). Separate with commas."}),
}
}
# Easy outputs (hide steps/cfg/denoise)
RETURN_TYPES = ("LATENT", "IMAGE", "IMAGE")
RETURN_NAMES = ("LATENT", "IMAGE", "mask_preview")
FUNCTION = "apply_easy"
def apply_easy(self,
preset_step,
model, positive, negative, vae, latent,
seed, steps, cfg, denoise, sampler_name, scheduler,
clipseg_text="", reference_image=None, clip_vision=None, custom=False):
lat, img, _s, _c, _d, mask = super().apply_cade2(
model, vae, positive, negative, latent,
int(seed), int(steps), float(cfg), float(denoise),
str(sampler_name), str(scheduler), 0.0,
preset_step=str(preset_step), custom_override=bool(custom), clipseg_text=str(clipseg_text),
reference_image=reference_image,
clip_vision=clip_vision,
)
return lat, img, mask
# Show simpler outputs in Easy variant
RETURN_TYPES = ("LATENT", "IMAGE", "IMAGE")
RETURN_NAMES = ("LATENT", "IMAGE", "mask_preview")
FUNCTION = "apply_easy"
def apply_easy(self,
preset_step,
model, positive, negative, vae, latent,
seed, steps, cfg, denoise, sampler_name, scheduler,
clipseg_text=""):
lat, img, _s, _c, _d, mask = super().apply_cade2(
model, vae, positive, negative, latent,
int(seed), int(steps), float(cfg), float(denoise),
str(sampler_name), str(scheduler), 0.0,
preset_step=str(preset_step), custom_override=bool(custom), clipseg_text=str(clipseg_text),
)
return lat, img, mask
# === Smart seed helpers (Sobol/Halton + light probing) ===
def _splitmix64(x: int) -> int:
x = (x + 0x9E3779B97F4A7C15) & 0xFFFFFFFFFFFFFFFF
z = x
z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9 & 0xFFFFFFFFFFFFFFFF
z = (z ^ (z >> 27)) * 0x94D049BB133111EB & 0xFFFFFFFFFFFFFFFF
z = z ^ (z >> 31)
return z & 0xFFFFFFFFFFFFFFFF
def _halton_single(index: int, base: int) -> float:
f = 1.0
r = 0.0
i = index
while i > 0:
f = f / base
r = r + f * (i % base)
i //= base
return r
def _sobol_like_2d(n: int, anchor: int) -> tuple[float, float]:
# lightweight 2D low-discrepancy via Halton(2,3) scrambled by anchor
i = n + 1 + (anchor % 9973)
return (_halton_single(i, 2), _halton_single(i, 3))
def _edge_density(img_bhwc: torch.Tensor) -> float:
lum = (0.2126 * img_bhwc[..., 0] + 0.7152 * img_bhwc[..., 1] + 0.0722 * img_bhwc[..., 2])
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], device=img_bhwc.device, dtype=img_bhwc.dtype).view(1,1,3,3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], device=img_bhwc.device, dtype=img_bhwc.dtype).view(1,1,3,3)
gx = F.conv2d(lum.unsqueeze(1), kx, padding=1)
gy = F.conv2d(lum.unsqueeze(1), ky, padding=1)
g = torch.sqrt(gx*gx + gy*gy)
return float(g.mean().item())
def _speckle_fraction(img_bhwc: torch.Tensor) -> float:
# reuse S/V-based candidate mask from despeckle logic (no replacement) to estimate fraction
R, G, Bc = img_bhwc[..., 0], img_bhwc[..., 1], img_bhwc[..., 2]
V = torch.maximum(R, torch.maximum(G, Bc))
mi = torch.minimum(R, torch.minimum(G, Bc))
S = 1.0 - (mi / (V + 1e-6))
v_thr = 0.98
s_thr = 0.12
cand = (V > v_thr) & (S < s_thr)
return float(cand.float().mean().item())
def _smart_seed_state_path() -> str:
import os
base = os.path.join(os.path.dirname(__file__), "..", "state")
os.makedirs(base, exist_ok=True)
return os.path.join(base, "smart_seed.json")
def _smart_seed_counter(anchor: int) -> int:
import os, json
path = _smart_seed_state_path()
try:
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
except Exception:
data = {}
key = hex(anchor & 0xFFFFFFFFFFFFFFFF)
n = int(data.get(key, 0))
data[key] = n + 1
try:
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
except Exception:
pass
return n
def _smart_seed_select(model,
vae,
positive,
negative,
latent,
sampler_name: str,
scheduler: str,
cfg: float,
denoise: float,
base_seed: int | None = None,
k: int = 6,
probe_steps: int = 6,
clip_vision=None,
reference_image=None,
clipseg_text: str = "",
step_tag: str | None = None,
diversity: float = 0.0) -> int:
# Log start of SmartSeed selection
try:
# cooperative cancel before any smart-seed work
model_management.throw_exception_if_processing_interrupted()
try:
# Visual separation before SmartSeed block
print("")
print("")
if step_tag:
print(f"\x1b[34m==== {step_tag}, Smart_seed_random: Start (k={int(k)}, steps={int(probe_steps)}, div={float(diversity):.2f}) ====\x1b[0m")
else:
print(f"\x1b[34m==== Smart_seed_random: Start (k={int(k)}, steps={int(probe_steps)}, div={float(diversity):.2f}) ====\x1b[0m")
except Exception:
pass
# Optional: precompute CLIP-Vision embedding of reference image
ref_embed = None
if (clip_vision is not None) and (reference_image is not None):
try:
ref_embed = _encode_clip_image(reference_image, clip_vision, target_res=224)
except Exception:
ref_embed = None
# Anchor from latent shape + sampler/scheduler (+ cfg/denoise)
sh = latent["samples"].shape if isinstance(latent, dict) and "samples" in latent else None
anchor = 1469598103934665603 # FNV offset basis
for v in (sh[2] if sh else 0, sh[3] if sh else 0, len(str(sampler_name)), len(str(scheduler)), int(cfg * 1000), int(denoise * 1000)):
anchor = _splitmix64(anchor ^ int(v))
# Advance a persistent counter per anchor to vary indices between runs
offset = _smart_seed_counter(anchor) * 7
# Build K candidate seeds from Halton(2,3)
cands: list[int] = []
for i in range(k):
u, v = _sobol_like_2d(offset + i, anchor)
lo = int(u * (1 << 32)) & 0xFFFFFFFF
hi = int(v * (1 << 32)) & 0xFFFFFFFF
seed64 = _splitmix64((hi << 32) ^ lo ^ anchor)
cands.append(seed64 & 0xFFFFFFFFFFFFFFFF)
best_seed = cands[0]
best_score = -1e9
for sd in cands:
# allow user to cancel between candidates
model_management.throw_exception_if_processing_interrupted()
try:
# quick KSampler preview at low steps
lat_in = {"samples": latent["samples"].clone()} if isinstance(latent, dict) else latent
lat_out, = _interruptible_ksampler(
model, int(sd), int(probe_steps), float(cfg), str(sampler_name), str(scheduler),
positive, negative, lat_in, denoise=float(min(denoise, 0.65))
)
img = safe_decode(vae, lat_out, to_fp32=bool(vae_decode_fp32))
# and again right after decode
model_management.throw_exception_if_processing_interrupted()
# Base score: edge density toward a target + low speckle + balanced exposure
ed = _edge_density(img)
speck = _speckle_fraction(img)
lum = float(img.mean().item())
edge_target = 0.10
score = -abs(ed - edge_target) - 2.0 * speck - 0.5 * abs(lum - 0.5)
# Deterministic jitter to avoid tie clusters (scaled by diversity)
if float(diversity) > 0.0:
try:
rnd = (_splitmix64(int(sd) ^ int(anchor)) & 0xFFFFFFFF) / 4294967296.0
score += (rnd - 0.5) * float(diversity)
except Exception:
pass
# Perceptual metrics: luminance std and Laplacian variance (downscaled)
try:
lum_t = (0.2126 * img[..., 0] + 0.7152 * img[..., 1] + 0.0722 * img[..., 2])
lstd = float(lum_t.std().item())
lch = lum_t.unsqueeze(1)
lch_small = F.interpolate(lch, size=(128, 128), mode='bilinear', align_corners=False)
lap_k = torch.tensor([[0.0, 1.0, 0.0], [1.0, -4.0, 1.0], [0.0, 1.0, 0.0]], device=lch_small.device, dtype=lch_small.dtype).view(1, 1, 3, 3)
lap = F.conv2d(lch_small, lap_k, padding=1)
lap_var = float(lap.var().item())
score += 0.15 * lstd + 0.10 * lap_var
except Exception:
pass
# Semantic alignment via CLIP-Vision when available
if ref_embed is not None and clip_vision is not None:
try:
cand_embed = _encode_clip_image(img, clip_vision, target_res=224)
sim = float((cand_embed * ref_embed).sum(dim=-1).mean().clamp(-1.0, 1.0).item())
sim01 = 0.5 * (sim + 1.0)
score += 0.75 * sim01
except Exception:
pass
# Focus coverage via CLIPSeg when text provided
if isinstance(clipseg_text, str) and clipseg_text.strip() != "":
try:
cmask = _clipseg_build_mask(img, clipseg_text, preview=192, threshold=0.40, blur=5.0, dilate=2, gain=1.0)
if cmask is not None:
area = float(cmask.mean().item())
cov_target = 0.06
cov_score = 1.0 - min(1.0, abs(area - cov_target) / max(cov_target, 1e-3))
score += 0.30 * cov_score
except Exception:
pass
if score > best_score:
best_score = score
best_seed = sd
try:
del img
except Exception:
pass
try:
del lat_out
except Exception:
pass
try:
del lat_in
except Exception:
pass
try:
del lch_small
except Exception:
pass
try:
del lap
except Exception:
pass
try:
del cand_embed
except Exception:
pass
try:
del cmask
except Exception:
pass
except Exception as e:
# do not swallow user interruption; also honour sentinel
if isinstance(e, model_management.InterruptProcessingException) or globals().get("_MG_CANCEL_REQUESTED", False):
globals()["_MG_CANCEL_REQUESTED"] = False
raise
continue
# Log end with selected seed
try:
if step_tag:
print(f"\x1b[34m==== {step_tag}, Smart_seed_random: End. Seed is: {int(best_seed & 0xFFFFFFFFFFFFFFFF)} ====\x1b[0m")
else:
print(f"\x1b[34m==== Smart_seed_random: End. Seed is: {int(best_seed & 0xFFFFFFFFFFFFFFFF)} ====\x1b[0m")
except Exception:
pass
return int(best_seed & 0xFFFFFFFFFFFFFFFF)
except Exception as e:
if isinstance(e, model_management.InterruptProcessingException) or globals().get("_MG_CANCEL_REQUESTED", False):
globals()["_MG_CANCEL_REQUESTED"] = False
# propagate cancel to stop the whole prompt cleanly
raise
# Fallback to time-based random
try:
import time
fallback_seed = int(_splitmix64(int(time.time_ns())))
except Exception:
fallback_seed = int(base_seed or 0)
try:
if step_tag:
print(f"\x1b[34m==== {step_tag}, Smart_seed_random: End. Seed is: {fallback_seed} ====\x1b[0m")
else:
print(f"\x1b[34m==== Smart_seed_random: End. Seed is: {fallback_seed} ====\x1b[0m")
except Exception:
pass
return fallback_seed
def _wrap_interruptible_callback(model, steps):
base_cb = nodes.latent_preview.prepare_callback(model, int(steps))
def _cb(step, x0, x, total_steps):
model_management.throw_exception_if_processing_interrupted()
return base_cb(step, x0, x, total_steps)
return _cb
def _interruptible_ksampler(model, seed, steps, cfg, sampler_name, scheduler,
positive, negative, latent, denoise=1.0):
lat_img = _sample.fix_empty_latent_channels(model, latent["samples"])
batch_inds = latent.get("batch_index", None)
noise = _sample.prepare_noise(lat_img, int(seed), batch_inds)
noise_mask = latent.get("noise_mask", None)
callback = _wrap_interruptible_callback(model, int(steps))
# cooperative cancel just before sampler entry
model_management.throw_exception_if_processing_interrupted()
disable_pbar = not _utils.PROGRESS_BAR_ENABLED
samples = _sample.sample(
model, noise, int(steps), float(cfg), str(sampler_name), str(scheduler),
positive, negative, lat_img,
denoise=float(denoise), disable_noise=False, start_step=None, last_step=None,
force_full_denoise=False, noise_mask=noise_mask, callback=callback,
disable_pbar=disable_pbar, seed=int(seed)
)
out = {**latent}
out["samples"] = samples
return (out,)
|