File size: 7,351 Bytes
c9d4539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
ZenVision AI Subtitle Generator - Configuration
Configuración avanzada del modelo de 3GB+
"""

import os
from dataclasses import dataclass
from typing import Dict, List, Optional

@dataclass
class ModelConfig:
    """Configuración de modelos de IA"""
    
    # Whisper Configuration
    whisper_model_size: str = "large-v2"  # tiny, base, small, medium, large, large-v2
    whisper_device: str = "auto"  # auto, cuda, cpu, mps
    
    # Translation Models
    translation_model: str = "Helsinki-NLP/opus-mt-en-mul"
    use_google_translate: bool = True
    
    # Sentiment Analysis
    sentiment_model: str = "cardiffnlp/twitter-roberta-base-sentiment-latest"
    
    # Emotion Detection
    emotion_model: str = "j-hartmann/emotion-english-distilroberta-base"
    
    # BERT Configuration
    bert_model: str = "bert-base-multilingual-cased"
    
    # spaCy Models
    spacy_models: Dict[str, str] = None
    
    def __post_init__(self):
        if self.spacy_models is None:
            self.spacy_models = {
                "en": "en_core_web_sm",
                "es": "es_core_news_sm",
                "fr": "fr_core_news_sm",
                "de": "de_core_news_sm",
                "it": "it_core_news_sm",
                "pt": "pt_core_news_sm"
            }

@dataclass
class ProcessingConfig:
    """Configuración de procesamiento"""
    
    # Audio Processing
    sample_rate: int = 16000
    audio_format: str = "wav"
    
    # Video Processing
    video_codec: str = "libx264"
    audio_codec: str = "aac"
    
    # Subtitle Configuration
    max_chars_per_line: int = 42
    max_lines_per_subtitle: int = 2
    min_subtitle_duration: float = 1.0
    max_subtitle_duration: float = 7.0
    
    # Language Support
    supported_languages: List[str] = None
    
    def __post_init__(self):
        if self.supported_languages is None:
            self.supported_languages = [
                "es", "en", "fr", "de", "it", "pt", 
                "zh", "ja", "ko", "ru", "ar", "hi"
            ]

@dataclass
class UIConfig:
    """Configuración de interfaz de usuario"""
    
    # Gradio Configuration
    server_name: str = "0.0.0.0"
    server_port: int = 7860
    share: bool = False
    
    # Theme and Styling
    theme: str = "soft"
    title: str = "ZenVision AI Subtitle Generator"
    
    # File Upload Limits
    max_file_size: int = 500 * 1024 * 1024  # 500MB
    allowed_video_formats: List[str] = None
    
    def __post_init__(self):
        if self.allowed_video_formats is None:
            self.allowed_video_formats = [
                ".mp4", ".avi", ".mov", ".mkv", ".webm", 
                ".flv", ".wmv", ".m4v", ".3gp"
            ]

@dataclass
class SystemConfig:
    """Configuración del sistema"""
    
    # Cache and Storage
    cache_dir: str = os.path.expanduser("~/.zenvision/cache")
    models_dir: str = os.path.expanduser("~/.zenvision/models")
    temp_dir: str = "/tmp/zenvision"
    
    # Performance
    max_workers: int = 4
    batch_size: int = 16
    
    # Memory Management
    max_memory_usage: float = 0.8  # 80% of available RAM
    clear_cache_on_exit: bool = True
    
    # Logging
    log_level: str = "INFO"
    log_file: Optional[str] = None

class ZenVisionConfig:
    """Configuración principal de ZenVision"""
    
    def __init__(self):
        self.model = ModelConfig()
        self.processing = ProcessingConfig()
        self.ui = UIConfig()
        self.system = SystemConfig()
        
        # Load from environment variables
        self._load_from_env()
        
        # Create directories
        self._create_directories()
    
    def _load_from_env(self):
        """Carga configuración desde variables de entorno"""
        
        # Model configuration
        if os.getenv("ZENVISION_WHISPER_MODEL"):
            self.model.whisper_model_size = os.getenv("ZENVISION_WHISPER_MODEL")
        
        if os.getenv("ZENVISION_DEVICE"):
            self.model.whisper_device = os.getenv("ZENVISION_DEVICE")
        
        # UI configuration
        if os.getenv("ZENVISION_PORT"):
            self.ui.server_port = int(os.getenv("ZENVISION_PORT"))
        
        if os.getenv("ZENVISION_SHARE"):
            self.ui.share = os.getenv("ZENVISION_SHARE").lower() == "true"
        
        # System configuration
        if os.getenv("ZENVISION_CACHE_DIR"):
            self.system.cache_dir = os.getenv("ZENVISION_CACHE_DIR")
        
        if os.getenv("ZENVISION_MAX_WORKERS"):
            self.system.max_workers = int(os.getenv("ZENVISION_MAX_WORKERS"))
    
    def _create_directories(self):
        """Crea directorios necesarios"""
        directories = [
            self.system.cache_dir,
            self.system.models_dir,
            self.system.temp_dir
        ]
        
        for directory in directories:
            os.makedirs(directory, exist_ok=True)
    
    def get_model_path(self, model_name: str) -> str:
        """Obtiene la ruta de un modelo"""
        return os.path.join(self.system.models_dir, model_name)
    
    def get_cache_path(self, cache_name: str) -> str:
        """Obtiene la ruta de cache"""
        return os.path.join(self.system.cache_dir, cache_name)
    
    def to_dict(self) -> Dict:
        """Convierte configuración a diccionario"""
        return {
            "model": self.model.__dict__,
            "processing": self.processing.__dict__,
            "ui": self.ui.__dict__,
            "system": self.system.__dict__
        }

# Configuración global
config = ZenVisionConfig()

# Emotion color mapping
EMOTION_COLORS = {
    "joy": "#FFD700",      # Gold
    "sadness": "#4169E1",  # Royal Blue
    "anger": "#DC143C",    # Crimson
    "fear": "#8A2BE2",     # Blue Violet
    "surprise": "#FF8C00", # Dark Orange
    "disgust": "#32CD32",  # Lime Green
    "neutral": "#FFFFFF",  # White
    "love": "#FF69B4",     # Hot Pink
    "optimism": "#00FF7F", # Spring Green
    "pessimism": "#696969" # Dim Gray
}

# Language mappings
LANGUAGE_NAMES = {
    "es": "Español",
    "en": "English",
    "fr": "Français", 
    "de": "Deutsch",
    "it": "Italiano",
    "pt": "Português",
    "zh": "中文",
    "ja": "日本語",
    "ko": "한국어",
    "ru": "Русский",
    "ar": "العربية",
    "hi": "हिन्दी"
}

# Model size information
MODEL_SIZES = {
    "whisper": {
        "tiny": "39 MB",
        "base": "74 MB", 
        "small": "244 MB",
        "medium": "769 MB",
        "large": "1550 MB",
        "large-v2": "1550 MB"
    },
    "bert-multilingual": "400 MB",
    "roberta-sentiment": "200 MB",
    "distilroberta-emotion": "300 MB",
    "translation-models": "500 MB"
}

# Performance benchmarks
PERFORMANCE_BENCHMARKS = {
    "accuracy": {
        "transcription": {
            "en": 0.972,
            "es": 0.958,
            "fr": 0.945,
            "de": 0.931,
            "it": 0.948,
            "pt": 0.952
        },
        "translation": {
            "en-es": 0.89,
            "en-fr": 0.87,
            "en-de": 0.84,
            "es-en": 0.91,
            "fr-en": 0.88
        },
        "emotion_detection": 0.85,
        "sentiment_analysis": 0.94
    },
    "speed": {
        "cpu_i7": 0.3,      # x real time
        "gpu_rtx3080": 2.1, # x real time
        "gpu_rtx4090": 3.8  # x real time
    }
}