Update README.md
Browse files
README.md
CHANGED
|
@@ -11,22 +11,37 @@ tags:
|
|
| 11 |
- computer-vision
|
| 12 |
- pytorch
|
| 13 |
- ultralytics
|
|
|
|
| 14 |
datasets:
|
| 15 |
-
-
|
| 16 |
metrics:
|
| 17 |
- precision
|
| 18 |
- recall
|
| 19 |
- mAP
|
| 20 |
library_name: ultralytics
|
| 21 |
pipeline_tag: object-detection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
---
|
| 23 |
|
| 24 |
-
#
|
| 25 |
|
| 26 |
-
Fine-tuned YOLOv11n model for detecting tennis rackets in images and videos.
|
| 27 |
|
| 28 |
## Model Details
|
| 29 |
|
|
|
|
|
|
|
| 30 |
- **Model Type**: Object Detection
|
| 31 |
- **Architecture**: YOLOv11 Nano (n)
|
| 32 |
- **Framework**: Ultralytics YOLOv11
|
|
@@ -42,18 +57,22 @@ Evaluated on validation set (66 images):
|
|
| 42 |
|--------|-------|
|
| 43 |
| **mAP@50** | **66.67%** |
|
| 44 |
| **mAP@50-95** | 33.33% |
|
| 45 |
-
| **Precision** | ~71%
|
| 46 |
-
| **Recall** | ~44%
|
| 47 |
| **Inference Speed** (M4 Pro) | ~10ms |
|
| 48 |
|
| 49 |
## Training Details
|
| 50 |
|
| 51 |
### Dataset
|
|
|
|
|
|
|
|
|
|
| 52 |
- **Training images**: 582
|
| 53 |
- **Validation images**: 66
|
| 54 |
- **Test images**: 55
|
| 55 |
- **Total**: 703 annotated images
|
| 56 |
- **Annotation format**: YOLO format (bounding boxes)
|
|
|
|
| 57 |
|
| 58 |
### Training Configuration
|
| 59 |
```yaml
|
|
@@ -82,19 +101,16 @@ Training time: ~26 minutes
|
|
| 82 |
## Usage
|
| 83 |
|
| 84 |
### Installation
|
| 85 |
-
|
| 86 |
```bash
|
| 87 |
pip install ultralytics
|
| 88 |
```
|
| 89 |
|
| 90 |
### Python API
|
| 91 |
-
|
| 92 |
```python
|
| 93 |
from ultralytics import YOLO
|
| 94 |
-
from PIL import Image
|
| 95 |
|
| 96 |
-
# Load model
|
| 97 |
-
model = YOLO('
|
| 98 |
|
| 99 |
# Predict on image
|
| 100 |
results = model.predict('tennis_match.jpg', conf=0.4)
|
|
@@ -110,11 +126,10 @@ for box in results[0].boxes:
|
|
| 110 |
```
|
| 111 |
|
| 112 |
### Video Processing
|
| 113 |
-
|
| 114 |
```python
|
| 115 |
from ultralytics import YOLO
|
| 116 |
|
| 117 |
-
model = YOLO('
|
| 118 |
|
| 119 |
# Process video
|
| 120 |
results = model.predict(
|
|
@@ -133,25 +148,23 @@ results = model.track(
|
|
| 133 |
```
|
| 134 |
|
| 135 |
### Command Line
|
| 136 |
-
|
| 137 |
```bash
|
| 138 |
# Predict on image
|
| 139 |
-
yolo detect predict model=
|
| 140 |
|
| 141 |
# Predict on video
|
| 142 |
-
yolo detect predict model=
|
| 143 |
|
| 144 |
# Track rackets in video
|
| 145 |
-
yolo detect track model=
|
| 146 |
|
| 147 |
# Validate model
|
| 148 |
-
yolo detect val model=
|
| 149 |
```
|
| 150 |
|
| 151 |
## Recommended Hyperparameters
|
| 152 |
|
| 153 |
### Inference Settings
|
| 154 |
-
|
| 155 |
```python
|
| 156 |
# Balanced (recommended)
|
| 157 |
conf_threshold = 0.40 # Confidence threshold
|
|
@@ -187,12 +200,13 @@ max_det = 15
|
|
| 187 |
## Use Cases
|
| 188 |
|
| 189 |
✅ **Recommended:**
|
| 190 |
-
- Tennis match analysis
|
| 191 |
- Player technique analysis
|
| 192 |
- Swing detection and tracking
|
| 193 |
- Automated coaching feedback
|
| 194 |
-
- Sports analytics
|
| 195 |
- Training video analysis
|
|
|
|
| 196 |
|
| 197 |
⚠️ **Not Recommended:**
|
| 198 |
- Real-time officiating decisions
|
|
@@ -203,8 +217,9 @@ max_det = 15
|
|
| 203 |
|
| 204 |
### Sample Detections
|
| 205 |
|
| 206 |
-
**mAP@50: 66.67%** - Good detection performance on typical tennis scenes
|
| 207 |
-
**Precision: ~71%** - When detected, about 7 out of 10 detections are correct
|
|
|
|
| 208 |
|
| 209 |
### Confidence Interpretation
|
| 210 |
|
|
@@ -215,35 +230,40 @@ max_det = 15
|
|
| 215 |
| 0.4 - 0.5 | Low confidence - possible tennis racket |
|
| 216 |
| < 0.4 | Very low confidence - likely false positive |
|
| 217 |
|
| 218 |
-
##
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
```python
|
| 223 |
from ultralytics import YOLO
|
| 224 |
|
| 225 |
-
# Load both models
|
| 226 |
-
|
| 227 |
-
|
| 228 |
|
| 229 |
# Detect both in same image
|
| 230 |
-
racket_results = model_racket.predict('match.jpg', conf=0.4)
|
| 231 |
ball_results = model_ball.predict('match.jpg', conf=0.3)
|
|
|
|
| 232 |
|
| 233 |
-
# Combine detections for analysis
|
| 234 |
-
print(f"
|
| 235 |
-
print(f"
|
| 236 |
```
|
| 237 |
|
| 238 |
## Advanced Usage
|
| 239 |
|
| 240 |
-
### Detect
|
| 241 |
-
|
| 242 |
```python
|
| 243 |
from ultralytics import YOLO
|
| 244 |
import cv2
|
| 245 |
|
| 246 |
-
model = YOLO('
|
| 247 |
video = cv2.VideoCapture('match.mp4')
|
| 248 |
|
| 249 |
frame_count = 0
|
|
@@ -257,7 +277,7 @@ while True:
|
|
| 257 |
# Detect rackets
|
| 258 |
results = model.predict(frame, conf=0.4, verbose=False)
|
| 259 |
|
| 260 |
-
# Track racket movement
|
| 261 |
for box in results[0].boxes:
|
| 262 |
x1, y1, x2, y2 = box.xyxy[0]
|
| 263 |
center_x = (x1 + x2) / 2
|
|
@@ -270,24 +290,59 @@ while True:
|
|
| 270 |
print(f"Total racket detections: {len(racket_positions)}")
|
| 271 |
```
|
| 272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
## Model Card Authors
|
| 274 |
|
| 275 |
-
- **Developed by**: Vuong
|
| 276 |
- **Model date**: November 2024
|
| 277 |
-
- **Model version**:
|
| 278 |
- **Model type**: Object Detection (YOLOv11)
|
|
|
|
| 279 |
|
| 280 |
-
##
|
| 281 |
|
| 282 |
-
|
| 283 |
|
|
|
|
| 284 |
```bibtex
|
| 285 |
-
@misc{
|
| 286 |
-
title={
|
| 287 |
author={Vuong},
|
| 288 |
year={2024},
|
| 289 |
publisher={Hugging Face},
|
| 290 |
-
howpublished={\url{https://huggingface.co
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
}
|
| 292 |
```
|
| 293 |
|
|
@@ -298,45 +353,47 @@ MIT License - Free for commercial and academic use.
|
|
| 298 |
## Acknowledgments
|
| 299 |
|
| 300 |
- Built with [Ultralytics YOLOv11](https://github.com/ultralytics/ultralytics)
|
| 301 |
-
-
|
| 302 |
-
- Part of the
|
| 303 |
|
| 304 |
## Contact & Support
|
| 305 |
|
| 306 |
For questions, issues, or collaboration:
|
| 307 |
-
-
|
| 308 |
-
- Model Updates: Check for newer versions
|
| 309 |
-
|
| 310 |
-
## Related Models
|
| 311 |
-
|
| 312 |
-
- [YOLOv11 Tennis Ball Detection](https://huggingface.co/...) - Companion model for ball detection
|
| 313 |
|
| 314 |
## Common Issues & Solutions
|
| 315 |
|
| 316 |
-
### Issue: Low Recall
|
| 317 |
**Solution**: Lower confidence threshold to 0.30-0.35
|
| 318 |
|
| 319 |
### Issue: Too Many False Positives
|
| 320 |
**Solution**: Increase confidence threshold to 0.50-0.55
|
| 321 |
|
| 322 |
-
### Issue: Missed Rackets in Motion
|
| 323 |
-
**Solution**: Use
|
| 324 |
|
| 325 |
### Issue: Multiple Detections per Racket
|
| 326 |
**Solution**: Increase NMS IoU threshold to 0.50-0.55
|
| 327 |
|
|
|
|
|
|
|
|
|
|
| 328 |
## Model Changelog
|
| 329 |
|
| 330 |
-
###
|
| 331 |
-
- Initial release
|
| 332 |
- YOLOv11n architecture
|
| 333 |
- mAP@50: 66.67%
|
| 334 |
-
- 703 training images
|
|
|
|
|
|
|
| 335 |
|
| 336 |
---
|
| 337 |
|
| 338 |
-
**Model Size**: 5.4 MB
|
| 339 |
-
**Inference Speed**: 10-65ms (device dependent)
|
| 340 |
-
**Supported Formats**: PyTorch (.pt), ONNX, TensorRT, CoreML
|
|
|
|
| 341 |
|
| 342 |
🎾 Ready for production use in tennis analysis applications!
|
|
|
|
| 11 |
- computer-vision
|
| 12 |
- pytorch
|
| 13 |
- ultralytics
|
| 14 |
+
- courtside
|
| 15 |
datasets:
|
| 16 |
+
- dataset1-yx5qr
|
| 17 |
metrics:
|
| 18 |
- precision
|
| 19 |
- recall
|
| 20 |
- mAP
|
| 21 |
library_name: ultralytics
|
| 22 |
pipeline_tag: object-detection
|
| 23 |
+
model-index:
|
| 24 |
+
- name: CourtSide Computer Vision v0.2
|
| 25 |
+
results:
|
| 26 |
+
- task:
|
| 27 |
+
type: object-detection
|
| 28 |
+
metrics:
|
| 29 |
+
- type: mAP@50
|
| 30 |
+
value: 66.67
|
| 31 |
+
- type: precision
|
| 32 |
+
value: 71
|
| 33 |
+
- type: recall
|
| 34 |
+
value: 44
|
| 35 |
---
|
| 36 |
|
| 37 |
+
# CourtSide Computer Vision v0.2 - Racket Detection 🎾
|
| 38 |
|
| 39 |
+
Fine-tuned YOLOv11n model for detecting tennis rackets in images and videos. Part of the CourtSide Computer Vision suite for comprehensive tennis match analysis.
|
| 40 |
|
| 41 |
## Model Details
|
| 42 |
|
| 43 |
+
- **Model Name**: CourtSide Computer Vision v0.2
|
| 44 |
+
- **Model ID**: `Davidsv/CourtSide-Computer-Vision-v0.2`
|
| 45 |
- **Model Type**: Object Detection
|
| 46 |
- **Architecture**: YOLOv11 Nano (n)
|
| 47 |
- **Framework**: Ultralytics YOLOv11
|
|
|
|
| 57 |
|--------|-------|
|
| 58 |
| **mAP@50** | **66.67%** |
|
| 59 |
| **mAP@50-95** | 33.33% |
|
| 60 |
+
| **Precision** | ~71% |
|
| 61 |
+
| **Recall** | ~44% |
|
| 62 |
| **Inference Speed** (M4 Pro) | ~10ms |
|
| 63 |
|
| 64 |
## Training Details
|
| 65 |
|
| 66 |
### Dataset
|
| 67 |
+
|
| 68 |
+
This model was trained on the **dataset1** by Tesi, available on Roboflow Universe.
|
| 69 |
+
|
| 70 |
- **Training images**: 582
|
| 71 |
- **Validation images**: 66
|
| 72 |
- **Test images**: 55
|
| 73 |
- **Total**: 703 annotated images
|
| 74 |
- **Annotation format**: YOLO format (bounding boxes)
|
| 75 |
+
- **Source**: [Roboflow Universe - Dataset1](https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr)
|
| 76 |
|
| 77 |
### Training Configuration
|
| 78 |
```yaml
|
|
|
|
| 101 |
## Usage
|
| 102 |
|
| 103 |
### Installation
|
|
|
|
| 104 |
```bash
|
| 105 |
pip install ultralytics
|
| 106 |
```
|
| 107 |
|
| 108 |
### Python API
|
|
|
|
| 109 |
```python
|
| 110 |
from ultralytics import YOLO
|
|
|
|
| 111 |
|
| 112 |
+
# Load CourtSide Computer Vision v0.2 model
|
| 113 |
+
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
|
| 114 |
|
| 115 |
# Predict on image
|
| 116 |
results = model.predict('tennis_match.jpg', conf=0.4)
|
|
|
|
| 126 |
```
|
| 127 |
|
| 128 |
### Video Processing
|
|
|
|
| 129 |
```python
|
| 130 |
from ultralytics import YOLO
|
| 131 |
|
| 132 |
+
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
|
| 133 |
|
| 134 |
# Process video
|
| 135 |
results = model.predict(
|
|
|
|
| 148 |
```
|
| 149 |
|
| 150 |
### Command Line
|
|
|
|
| 151 |
```bash
|
| 152 |
# Predict on image
|
| 153 |
+
yolo detect predict model=Davidsv/CourtSide-Computer-Vision-v0.2 source=image.jpg conf=0.4
|
| 154 |
|
| 155 |
# Predict on video
|
| 156 |
+
yolo detect predict model=Davidsv/CourtSide-Computer-Vision-v0.2 source=video.mp4 conf=0.4 save=True
|
| 157 |
|
| 158 |
# Track rackets in video
|
| 159 |
+
yolo detect track model=Davidsv/CourtSide-Computer-Vision-v0.2 source=video.mp4 conf=0.4
|
| 160 |
|
| 161 |
# Validate model
|
| 162 |
+
yolo detect val model=Davidsv/CourtSide-Computer-Vision-v0.2 data=dataset.yaml
|
| 163 |
```
|
| 164 |
|
| 165 |
## Recommended Hyperparameters
|
| 166 |
|
| 167 |
### Inference Settings
|
|
|
|
| 168 |
```python
|
| 169 |
# Balanced (recommended)
|
| 170 |
conf_threshold = 0.40 # Confidence threshold
|
|
|
|
| 200 |
## Use Cases
|
| 201 |
|
| 202 |
✅ **Recommended:**
|
| 203 |
+
- Tennis match analysis and statistics
|
| 204 |
- Player technique analysis
|
| 205 |
- Swing detection and tracking
|
| 206 |
- Automated coaching feedback
|
| 207 |
+
- Sports analytics dashboards
|
| 208 |
- Training video analysis
|
| 209 |
+
- Action recognition pipelines (combined with ball detection)
|
| 210 |
|
| 211 |
⚠️ **Not Recommended:**
|
| 212 |
- Real-time officiating decisions
|
|
|
|
| 217 |
|
| 218 |
### Sample Detections
|
| 219 |
|
| 220 |
+
**mAP@50: 66.67%** - Good detection performance on typical tennis scenes
|
| 221 |
+
**Precision: ~71%** - When detected, about 7 out of 10 detections are correct
|
| 222 |
+
**Recall: ~44%** - Detects approximately 4-5 out of 10 rackets
|
| 223 |
|
| 224 |
### Confidence Interpretation
|
| 225 |
|
|
|
|
| 230 |
| 0.4 - 0.5 | Low confidence - possible tennis racket |
|
| 231 |
| < 0.4 | Very low confidence - likely false positive |
|
| 232 |
|
| 233 |
+
## CourtSide Computer Vision Suite
|
| 234 |
+
|
| 235 |
+
This model is part of the **CourtSide Computer Vision** project for comprehensive tennis analysis:
|
| 236 |
|
| 237 |
+
### Available Models
|
| 238 |
|
| 239 |
+
- **v0.1** - Tennis Ball Detection ([Davidsv/CourtSide-Computer-Vision-v0.1](https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.1))
|
| 240 |
+
- **v0.2** - Tennis Racket Detection (this model)
|
| 241 |
+
|
| 242 |
+
### Combined Usage Example
|
| 243 |
```python
|
| 244 |
from ultralytics import YOLO
|
| 245 |
|
| 246 |
+
# Load both CourtSide CV models
|
| 247 |
+
model_ball = YOLO('Davidsv/CourtSide-Computer-Vision-v0.1') # Ball detection
|
| 248 |
+
model_racket = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2') # Racket detection
|
| 249 |
|
| 250 |
# Detect both in same image
|
|
|
|
| 251 |
ball_results = model_ball.predict('match.jpg', conf=0.3)
|
| 252 |
+
racket_results = model_racket.predict('match.jpg', conf=0.4)
|
| 253 |
|
| 254 |
+
# Combine detections for comprehensive analysis
|
| 255 |
+
print(f"Balls detected: {len(ball_results[0].boxes)}")
|
| 256 |
+
print(f"Rackets detected: {len(racket_results[0].boxes)}")
|
| 257 |
```
|
| 258 |
|
| 259 |
## Advanced Usage
|
| 260 |
|
| 261 |
+
### Detect and Track Swing Actions
|
|
|
|
| 262 |
```python
|
| 263 |
from ultralytics import YOLO
|
| 264 |
import cv2
|
| 265 |
|
| 266 |
+
model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
|
| 267 |
video = cv2.VideoCapture('match.mp4')
|
| 268 |
|
| 269 |
frame_count = 0
|
|
|
|
| 277 |
# Detect rackets
|
| 278 |
results = model.predict(frame, conf=0.4, verbose=False)
|
| 279 |
|
| 280 |
+
# Track racket movement for swing analysis
|
| 281 |
for box in results[0].boxes:
|
| 282 |
x1, y1, x2, y2 = box.xyxy[0]
|
| 283 |
center_x = (x1 + x2) / 2
|
|
|
|
| 290 |
print(f"Total racket detections: {len(racket_positions)}")
|
| 291 |
```
|
| 292 |
|
| 293 |
+
### Full Tennis Analysis Pipeline
|
| 294 |
+
```python
|
| 295 |
+
from ultralytics import YOLO
|
| 296 |
+
|
| 297 |
+
# Load all CourtSide models
|
| 298 |
+
ball_model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.1')
|
| 299 |
+
racket_model = YOLO('Davidsv/CourtSide-Computer-Vision-v0.2')
|
| 300 |
+
|
| 301 |
+
# Process video with both models
|
| 302 |
+
ball_results = ball_model.track('match.mp4', conf=0.3)
|
| 303 |
+
racket_results = racket_model.track('match.mp4', conf=0.4)
|
| 304 |
+
|
| 305 |
+
# Combine for action recognition and analytics
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
## Model Card Authors
|
| 309 |
|
| 310 |
+
- **Developed by**: Davidsv (Vuong)
|
| 311 |
- **Model date**: November 2024
|
| 312 |
+
- **Model version**: v0.2
|
| 313 |
- **Model type**: Object Detection (YOLOv11)
|
| 314 |
+
- **Part of**: CourtSide Computer Vision Suite
|
| 315 |
|
| 316 |
+
## Citations
|
| 317 |
|
| 318 |
+
### This Model
|
| 319 |
|
| 320 |
+
If you use this model, please cite:
|
| 321 |
```bibtex
|
| 322 |
+
@misc{courtsidecv_v0.2_2024,
|
| 323 |
+
title={CourtSide Computer Vision v0.2: Tennis Racket Detection with YOLOv11},
|
| 324 |
author={Vuong},
|
| 325 |
year={2024},
|
| 326 |
publisher={Hugging Face},
|
| 327 |
+
howpublished={\url{https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.2}}
|
| 328 |
+
}
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### Dataset
|
| 332 |
+
|
| 333 |
+
This model was trained using the dataset1 dataset. Please cite:
|
| 334 |
+
```bibtex
|
| 335 |
+
@misc{dataset1-yx5qr_dataset,
|
| 336 |
+
title = {dataset1 Dataset},
|
| 337 |
+
type = {Open Source Dataset},
|
| 338 |
+
author = {Tesi},
|
| 339 |
+
howpublished = {\url{https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr}},
|
| 340 |
+
url = {https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr},
|
| 341 |
+
journal = {Roboflow Universe},
|
| 342 |
+
publisher = {Roboflow},
|
| 343 |
+
year = {2023},
|
| 344 |
+
month = {mar},
|
| 345 |
+
note = {visited on 2024-11-20}
|
| 346 |
}
|
| 347 |
```
|
| 348 |
|
|
|
|
| 353 |
## Acknowledgments
|
| 354 |
|
| 355 |
- Built with [Ultralytics YOLOv11](https://github.com/ultralytics/ultralytics)
|
| 356 |
+
- Dataset by Tesi via [Roboflow Universe](https://universe.roboflow.com/tesi-mpvmr/dataset1-yx5qr)
|
| 357 |
+
- Part of the CourtSide Computer Vision project for tennis analysis
|
| 358 |
|
| 359 |
## Contact & Support
|
| 360 |
|
| 361 |
For questions, issues, or collaboration:
|
| 362 |
+
- Hugging Face: [@Davidsv](https://huggingface.co/Davidsv)
|
| 363 |
+
- Model Updates: Check for newer versions in the CourtSide CV series
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
## Common Issues & Solutions
|
| 366 |
|
| 367 |
+
### Issue: Low Recall (Missing Rackets)
|
| 368 |
**Solution**: Lower confidence threshold to 0.30-0.35
|
| 369 |
|
| 370 |
### Issue: Too Many False Positives
|
| 371 |
**Solution**: Increase confidence threshold to 0.50-0.55
|
| 372 |
|
| 373 |
+
### Issue: Missed Rackets in Fast Motion
|
| 374 |
+
**Solution**: Use `model.track()` instead of `model.predict()` for better temporal consistency
|
| 375 |
|
| 376 |
### Issue: Multiple Detections per Racket
|
| 377 |
**Solution**: Increase NMS IoU threshold to 0.50-0.55
|
| 378 |
|
| 379 |
+
### Issue: Poor Performance on Unusual Angles
|
| 380 |
+
**Solution**: Consider fine-tuning on your specific camera setup or use data augmentation
|
| 381 |
+
|
| 382 |
## Model Changelog
|
| 383 |
|
| 384 |
+
### v0.2 (2024-11-20)
|
| 385 |
+
- Initial release of racket detection model
|
| 386 |
- YOLOv11n architecture
|
| 387 |
- mAP@50: 66.67%
|
| 388 |
+
- 703 training images from Roboflow dataset
|
| 389 |
+
- Optimized for standard tennis racket detection
|
| 390 |
+
- Part of CourtSide Computer Vision suite
|
| 391 |
|
| 392 |
---
|
| 393 |
|
| 394 |
+
**Model Size**: 5.4 MB
|
| 395 |
+
**Inference Speed**: 10-65ms (device dependent)
|
| 396 |
+
**Supported Formats**: PyTorch (.pt), ONNX, TensorRT, CoreML
|
| 397 |
+
**Model Hub**: [Davidsv/CourtSide-Computer-Vision-v0.2](https://huggingface.co/Davidsv/CourtSide-Computer-Vision-v0.2)
|
| 398 |
|
| 399 |
🎾 Ready for production use in tennis analysis applications!
|