--- frameworks: - Pytorch license: Apache License 2.0 tasks: - text-to-image-synthesis #model-type: ##如 gpt、phi、llama、chatglm、baichuan 等 #- gpt #domain: ##如 nlp、cv、audio、multi-modal #- nlp #language: ##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa #- cn #metrics: ##如 CIDEr、Blue、ROUGE 等 #- CIDEr #tags: ##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他 #- pretrained #tools: ##如 vllm、fastchat、llamacpp、AdaSeq 等 #- vllm base_model_relation: finetune base_model: - Qwen/Qwen-Image --- # Qwen-Image 全量蒸馏加速模型 ![](./assets/title.jpg) ## 模型介绍 本模型是 [Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image) 的蒸馏加速版本。原版模型需要进行 40 步推理,且需要开启 classifier-free guidance (CFG),总计需要 80 次模型前向推理。蒸馏加速模型仅需要进行 15 步推理,且无需开启 CFG,总计需要 15 次模型前向推理,**实现约 5 倍的加速**。当然,可根据需要进一步减少推理步数,但生成效果会有一定损失。 训练框架基于 [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) 构建,训练数据是由原模型根据 [DiffusionDB](https://www.modelscope.cn/datasets/AI-ModelScope/diffusiondb) 中随机抽取的提示词生成的 1.6 万张图,训练程序在 8 * MI308X GPU 上运行了约 1 天。 ## 效果展示 ||原版模型|原版模型|加速模型| |-|-|-|-| |推理步数|40|15|15| |CFG scale|4|1|1| |前向推理次数|80|15|15| |样例1|![](./assets/image_1_full.jpg)|![](./assets/image_1_original.jpg)|![](./assets/image_1_ours.jpg)| |样例2|![](./assets/image_2_full.jpg)|![](./assets/image_2_original.jpg)|![](./assets/image_2_ours.jpg)| |样例3|![](./assets/image_3_full.jpg)|![](./assets/image_3_original.jpg)|![](./assets/image_3_ours.jpg)| ## 推理代码 ```shell git clone https://github.com/modelscope/DiffSynth-Studio.git cd DiffSynth-Studio pip install -e . ``` ```python from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig import torch pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Distill-Full", origin_file_pattern="diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。" image = pipe(prompt, seed=0, num_inference_steps=15, cfg_scale=1) image.save("image.jpg") ```