--- license: apache-2.0 --- # Z-Image Turbo Acceleration Capability Fix LoRA ## Model Introduction This model is a LoRA used to fix the acceleration capability of Z-Image Turbo LoRA. LoRAs trained directly based on Z-Image Turbo will lose their acceleration capability. Images generated under acceleration configuration (steps=8, cfg=1) become blurry, while images generated under non-acceleration configuration (steps=30, cfg=2) remain normal. ## Results Training Data: ![](assets/training_data.jpg) Generation Results: |steps=8, cfg=1|steps=30, cfg=2|steps=8, cfg=1, with our model fix| |-|-|-| |![](assets/image_base_acc.jpg)|![](assets/image_base_nonacc.jpg)|![](assets/image_with_our_lora.jpg)| ## Training with Z-Image Turbo If you want to train LoRAs based on Z-Image Turbo while maintaining its acceleration capability, please refer to our detailed training strategies guide: 📖 [**Training Strategies of Z-Image Turbo**](https://huggingface.co/blog/kelseye/training-strategies-of-z-image-turbo) This guide covers four different training approaches: - **Scheme 1**: Standard SFT Training + No Acceleration Configuration - **Scheme 2**: Differential LoRA Training + Acceleration Configuration - **Scheme 3**: Standard SFT + Trajectory Imitation Distillation + Acceleration Configuration - **Scheme 4**: Standard SFT + Loading DistillPatch LoRA (Recommended) + Acceleration Configuration We recommend **Scheme 4** as it offers the best trade-off between training simplicity and inference speed. ## Inference Code ```python from diffsynth.pipelines.z_image import ZImagePipeline, ModelConfig import torch pipe = ZImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Tongyi-MAI/Z-Image-Turbo", origin_file_pattern="transformer/*.safetensors"), ModelConfig(model_id="Tongyi-MAI/Z-Image-Turbo", origin_file_pattern="text_encoder/*.safetensors"), ModelConfig(model_id="Tongyi-MAI/Z-Image-Turbo", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Tongyi-MAI/Z-Image-Turbo", origin_file_pattern="tokenizer/"), ) pipe.load_lora(pipe.dit, "path/to/your/lora.safetensors") pipe.load_lora(pipe.dit, ModelConfig(model_id="DiffSynth-Studio/Z-Image-Turbo-DistillPatch", origin_file_pattern="model.safetensors")) image = pipe(prompt="a dog", seed=42, rand_device="cuda") image.save("image.jpg") ```