hporta commited on
Commit
a7f5327
·
verified ·
1 Parent(s): 8ab40d1

Upload 2 files

Browse files
Files changed (2) hide show
  1. EnvResNet-06-f1-0.46.ckpt +3 -0
  2. ResNet_ENV_ONLY.yaml +101 -0
EnvResNet-06-f1-0.46.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d250c1b4d03b209583a821ef8bd41ddbcce17f825b527a2e75f88aa35b8964f
3
+ size 1170042660
ResNet_ENV_ONLY.yaml ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ defaults:
2
+ - _self_
3
+ - global_config
4
+
5
+ MODEL:
6
+ architecture: "EnvResNet"
7
+ resnet_type: "resnet50"
8
+ pretrained: True
9
+ input_dim: 6
10
+ depth: 2
11
+ encoder_channels: [64, 256, 512, 1024, 2048]
12
+ decoder_channels: [1024, 512, 256, 128, 64]
13
+ num_classes: 2
14
+ kernel_size: [3, 3]
15
+ n_stack_layers: 1
16
+ out_H: 24
17
+ out_W: 24
18
+ threshold: 0.5
19
+ multi_head: False
20
+
21
+ mid_input_res: 32
22
+ low_input_res: 32
23
+ env_resnet_type: "resnet18"
24
+ env_encoder_channel: 512
25
+ low_input_dim: 10
26
+ output_dim: 64
27
+ env_stack_layers: 1
28
+ env_depth: 7
29
+ mask_env: True
30
+ non_spatial: 4
31
+
32
+ SOLVER:
33
+ num_epochs: 20
34
+ num_warmup_epochs: 2
35
+ pos_weight: 6.7
36
+ loss_function: combined_dice_ce
37
+ lr_scheduler: 'cosine'
38
+ lr_base: 5e-6
39
+ lr_min: 1e-7
40
+ lr_start: 1e-7
41
+ num_cycles: 1
42
+ weight_decay: 0.01
43
+ accumulate_grad_batches: 1
44
+ interval: "epoch"
45
+
46
+ ### Leveraging RAW *.npy files ###
47
+ DATASETS:
48
+ kwargs:
49
+ tab_dir: ["${paths.pos_env_spa}", "${paths.neg_env_spa}"]
50
+ with_loc: False
51
+ with_doy: True
52
+ is_spatial: True
53
+ nan_value: "median"
54
+ # bands: possibility to specify the selected bands.
55
+ train:
56
+ paths: "${paths.split}"
57
+ label_dir: "${paths.label}"
58
+ batch_size: 24
59
+ num_workers: 8
60
+
61
+ eval:
62
+ paths: "${paths.split}"
63
+ label_dir: "${paths.label}"
64
+ batch_size: 24
65
+ num_workers: 8
66
+
67
+ test:
68
+
69
+ ### Leveraging Hf parquet files ###
70
+ #DATASETS:
71
+ # mode: "huggingface"
72
+ # kwargs:
73
+ # mean_file: "${paths.bands_mean}"
74
+ # std_file: "${paths.bands_std}"
75
+ # with_loc: False
76
+ # with_doy: True
77
+ # is_spatial: True
78
+ # nan_value: "median"
79
+ # bands: possibility to specify the selected bands.
80
+ # train:
81
+ # data_dir: "${paths.hf_data}"
82
+ # batch_size: 24
83
+ # num_workers: 8
84
+ #
85
+ # eval:
86
+ # data_dir: "${paths.hf_data}"
87
+ # batch_size: 24
88
+ # num_workers: 8
89
+
90
+ CHECKPOINT:
91
+ load_from_checkpoint:
92
+ experiment_name: "CNN_ENV_ONLY"
93
+ save_path: "./results/models"
94
+ train_metrics_steps: 200
95
+ save_steps: 10000
96
+ wandb_project: "${wandb.project}"
97
+ wandb_user: "${wandb.user}"
98
+
99
+ SET-UP:
100
+ seed: 42
101
+ local_device_ids: [0]