Overview
Finetuned Qwen2.5-3B
the training was for increasing the model capabilities on Instruction following and specific data.
Training Time : 14.5h
Datasets
SMART-Goals-Validation------[https://huggingface.co/datasets/HashTag766/SMART-Goals-Validation]
open-ocra-alpaca-cleaned----[https://huggingface.co/datasets/diabolic6045/open-ocra-alpaca-cleaned] only on 120000k examples
Uploaded model
- Developed by: HashTag766
- License: apache-2.0
- Finetuned from model : SaintHoney/PersonalManV1.0
The code used for finetuning
%%capture
!pip install pip3-autoremove
!pip-autoremove torch torchvision torchaudio -y
!pip install torch torchvision torchaudio xformers --index-url https://download.pytorch.org/whl/cu121
!pip install unsloth
---------------------------------------------------------------------------------------------
from kaggle_secrets import UserSecretsClient
user_secrets = UserSecretsClient() # from kaggle_secrets import UserSecretsClient
hugging_face_token = user_secrets.get_secret("HF-Token")
# Login to Hugging Face
from huggingface_hub import login # Lets you login to API
login(hugging_face_token) # from huggingface_hub import login
---------------------------------------------------------------------------------------------
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "SaintHoney/PersonalManV1.0",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
---------------------------------------------------------------------------------------------
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
---------------------------------------------------------------------------------------------
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("HashTag766/SMART-Goals-Validation", split = "train") # specify here the number of examples from dataset
dataset = dataset.map(formatting_prompts_func, batched = True,)
---------------------------------------------------------------------------------------------
from trl import SFTTrainer
from transformers import TrainingArguments, DataCollatorForSeq2Seq
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer),
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
num_train_epochs = 3, # Set this for 1 full training run.
# max_steps = 60,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to = "none", # Use this for WandB etc
),
)
trainer_stats = trainer.train()
---------------------------------------------------------------------------------------------
model.push_to_hub("hf/model...", token = "...") # Online saving
tokenizer.push_to_hub("hf/model...", token = "...") # Online saving
This qwen2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for HashTag766/QwenAssistant
Base model
SaintHoney/PersonalManV1.0