File size: 14,067 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import torch
import torch.nn as nn
from torch.nn.utils import clip_grad_norm_
from torch_geometric.nn import to_hetero
import torch.optim as optim
from torch.utils.data.distributed import DistributedSampler
from loguru import logger
import numpy as np
from torch.optim.lr_scheduler import StepLR, CosineAnnealingLR, ExponentialLR, ReduceLROnPlateau
import torch.distributed as dist
from src.utils import seed_worker

from torch_geometric.loader import DataLoader
from torch.utils.data import ConcatDataset
from torch.cuda.amp import autocast
from .utils import count_parameters, AverageMeter, AVGMeter, Reporter, Timer

# torch.autograd.set_detect_anomaly(True)

class Oven(object):

    def __init__(self, cfg):
        self.cfg = cfg
        self.ngpus = cfg.get('ngpus', 1)



    def _init_training_wt_checkpoint(self, filepath_ckp):
        if not os.path.exists(filepath_ckp):
            return np.Infinity, -1, 0
        
        checkpoint_resum = torch.load(filepath_ckp)
        self.model.load_state_dict(checkpoint_resum['model_state'])
        epoch = checkpoint_resum['epoch']
        previous_best = checkpoint_resum['best_performance']
        previous_best_epoch = checkpoint_resum["best_epoch"]
        previous_best_metrics = checkpoint_resum["local_best_metrics"]
        return previous_best, previous_best_epoch, epoch, previous_best_metrics

    def _init_optim(self):
        if self.cfg['train'].get("optimizer_type", "Adam").lower() in "adam":
            optimizer = optim.Adam(self.model.parameters(),
                                   lr=float(self.cfg['train']['learning_rate']),
                                   weight_decay=self.cfg['train'].get("weight_decay", 1e-5)
                                   )
        else: # SGD by defalut
            optimizer = optim.SGD(self.model.parameters(), 
                                lr=self.cfg['train']['learning_rate'], 
                                momentum=self.cfg['train'].get("momentum", 0.9), 
                                weight_decay=self.cfg['train'].get("weight_decay", 1e-5))

        # scheduler = StepLR(optimizer, step_size=int(self.cfg['train']['epochs']*2/3), gamma=0.1)
        if self.cfg['scheduler']['type'] == 'Cosine':
            scheduler = CosineAnnealingLR(optimizer,
                                          T_max=self.cfg['train']['epochs'],
                                          eta_min=float(self.cfg['scheduler']['eta_min']))
        elif self.cfg['scheduler']['type'] == 'Exponential':
            scheduler = ExponentialLR(optimizer, gamma=self.cfg['scheduler']['gamma'], last_epoch=-1, verbose=False)
        elif self.cfg['scheduler']['type'] == 'ReduceLROnPlateau':
            scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.7, patience=5, min_lr=1e-5)
        else: # otherwise: Fixed lr
            scheduler = None
        return optimizer, scheduler

    def _init_data(self):
        train_dataset = self.get_dataset(**self.cfg['data']['train'])
        val_dataset = self.get_dataset(**self.cfg['data']['val'])

        if not self.cfg['distributed']:
            train_loader = DataLoader(
                train_dataset,
                batch_size=self.cfg['data']['batch_size'],
                num_workers=self.cfg['data']['num_workers'],
                shuffle=True,
                worker_init_fn=seed_worker,
                drop_last=True
            )
            val_loader = DataLoader(
                val_dataset,
                batch_size=self.cfg['data'].get("batch_size_test", self.cfg['data']['batch_size']),
                num_workers=self.cfg['data']['num_workers'],
                shuffle=False,
                drop_last=True,
                worker_init_fn=seed_worker
            )
        else:
            train_sampler = DistributedSampler(train_dataset, shuffle=True)
            train_loader = DataLoader(train_dataset, 
                                  batch_size=self.cfg['data']['batch_size'], 
                                  num_workers=self.cfg['data']['num_workers'], 
                                  sampler=train_sampler,
                                  drop_last=True,
                                  worker_init_fn=seed_worker)
            
            valid_sampler = DistributedSampler(val_dataset, shuffle=False)
            val_loader = DataLoader(val_dataset, 
                                      batch_size=self.cfg['data'].get("batch_size_test", self.cfg['data']['batch_size']), 
                                      num_workers=self.cfg['data']['num_workers'], 
                                      sampler=valid_sampler, 
                                      drop_last=True,
                                      worker_init_fn=seed_worker)

        return train_loader, val_loader

    def get_dataset(self, dataset_type, **kwargs):
        if dataset_type == 'PowerFlowDataset':
            from src.dataset.powerflow_dataset import PowerFlowDataset
            return PowerFlowDataset(
                data_root=kwargs['data_root'],
                split_txt=kwargs['split_txt'],
                pq_len=kwargs['pq_len'],
                pv_len=kwargs['pv_len'],
                slack_len=kwargs['slack_len'],
                mask_num=kwargs['mask_num']
            )


    def summary_epoch(self,
                      epoch,
                      train_loss, train_matrix,
                      valid_loss, val_matrix,
                      timer, local_best, 
                      local_best_ep=-1,
                      local_best_metrics={},
                      local_best_ema=100, 
                      local_best_ep_ema=-1,
                      local_best_metrics_ema = {},
                      valid_loss_ema=None, val_matrix_ema=None):

        if self.cfg['distributed']:
            if dist.get_rank() == 0:
                cur_lr = self.optim.param_groups[0]["lr"]
                # self.reporter.record({'epoch': epoch+1, 'train_loss': train_loss, 'valid_loss': valid_loss, 'lr': cur_lr})
                self.reporter.record({'loss/train_loss': train_loss}, epoch=epoch)
                self.reporter.record({'loss/val_loss': valid_loss}, epoch=epoch)
                self.reporter.record({'lr': cur_lr}, epoch=epoch)
                self.reporter.record(train_matrix, epoch=epoch)
                self.reporter.record(val_matrix, epoch=epoch)

                # logger.info(f"Epoch {str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}, lr: {cur_lr: .8f}, eta: {timer.eta}h, train_loss: {train_loss: .5f}, valid_loss: {valid_loss: .5f}")
                logger.info(f"Epoch {str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']},"
                        + f" lr: {cur_lr: .8f}, eta: {timer.eta}h, "
                        + f"train_loss: {train_loss.agg(): .5f}, "
                        + f"valid_loss: {valid_loss.agg(): .5f}")
                
                train_matrix_info = "Train: "
                for key in train_matrix.keys():
                    tkey = str(key).split("/")[-1]
                    train_matrix_info += f"{tkey}:{train_matrix[key].agg(): .6f}  "
                logger.info(f"\t{train_matrix_info}")

                val_matrix_info = "ZTest: "
                performance_record = dict()
                for key in val_matrix.keys():
                    tkey = str(key).split("/")[-1]
                    val_matrix_info += f"{tkey}:{val_matrix[key].agg(): .6f}  "
                    performance_record[key] = val_matrix[key].agg()
                logger.info(f"\t{val_matrix_info}")

                if val_matrix_ema is not None:
                    val_matrix_info_ema = "ZTest-ema: "
                    performance_record_ema = dict()
                    for key in val_matrix_ema.keys():
                        tkey = str(key).split("/")[-1]
                        val_matrix_info_ema += f"{tkey}:{val_matrix_ema[key].agg(): .6f}  "
                        performance_record_ema[key] = val_matrix_ema[key].agg()
                    logger.info(f"\t{val_matrix_info_ema}")

                    checked_performance_ema = {x:y for x,y in performance_record_ema.items() if "rmse" in x}
                    best_performance_ema = max(checked_performance_ema.values())
                    if best_performance_ema < local_best_ema:
                        local_best_ema = best_performance_ema
                        local_best_ep_ema = epoch
                        local_best_metrics_ema = checked_performance_ema
                    logger.info(f"\t           ValOfEMA:{best_performance_ema:.6f}/{local_best_ema:.6f},  Epoch:{epoch+1}/{local_best_ep_ema+1}")
                
                # best_performance = max(performance_record.values())
                checked_performance = {x:y for x,y in performance_record.items() if "rmse" in x}
                best_performance = max(checked_performance.values())
                if best_performance < local_best:
                    local_best = best_performance
                    local_best_metrics = checked_performance
                    local_best_ep = epoch
                    # torch.save(self.model.module, os.path.join(self.cfg['log_path'], 'ckpt_{}_{}.pt'.format(epoch, round(local_best,4))))
                    torch.save(self.model.module, os.path.join(self.cfg['log_path'], 'ckpt_best.pt'))
                
                state = {
                    "epoch": epoch + 1,
                    # "model_state": self.model.module.state_dict(),
                    "model_state": self.model.state_dict(),
                    "optimizer_state": self.optim.state_dict(),
                    "scheduler_state": self.scheduler.state_dict(),
                    "best_performance": local_best,
                    "best_epoch":local_best_ep,
                    "local_best_metrics": local_best_metrics,
                }
                torch.save(state, os.path.join(self.cfg['log_path'], 'ckpt_latest.pt'))
                logger.info(f"\tTime(ep):{int(timer.elapsed_time)}s,  Val(curr/best):{best_performance:.6f}/{local_best:.6f},  Epoch(curr/best):{epoch+1}/{local_best_ep+1}")
            # else:
            #     return local_best, local_best_ep
        else:
            cur_lr = self.optim.param_groups[0]["lr"]
            self.reporter.record({'loss/train_loss': train_loss}, epoch=epoch)
            self.reporter.record({'loss/val_loss': valid_loss}, epoch=epoch)
            self.reporter.record({'lr': cur_lr}, epoch=epoch)
            self.reporter.record(train_matrix, epoch=epoch)
            self.reporter.record(val_matrix, epoch=epoch)

            logger.info(f"Epoch {epoch}/{self.cfg['train']['epochs']},"
                        + f" lr: {cur_lr: .8f}, eta: {timer.eta}h, "
                        + f"train_loss: {train_loss.agg(): .5f}, "
                        + f"valid_loss: {valid_loss.agg(): .5f}")

            train_matrix_info = "Train: "
            for key in train_matrix.keys():
                tkey = str(key).split("/")[-1]
                train_matrix_info += f"{tkey}:{train_matrix[key].agg(): .8f}  "
            logger.info(f"\t{train_matrix_info}")

            val_matrix_info = "ZTest: "
            performance_record = dict()
            for key in val_matrix.keys():
                tkey = str(key).split("/")[-1]
                val_matrix_info += f"{tkey}:{val_matrix[key].agg(): .8f}  "
                performance_record[key] = val_matrix[key].agg()
            logger.info(f"\t{val_matrix_info}")

            if val_matrix_ema is not None:
                val_matrix_info_ema = "ZTest-ema: "
                performance_record_ema = dict()
                for key in val_matrix_ema.keys():
                    tkey = str(key).split("/")[-1]
                    val_matrix_info_ema += f"{tkey}:{val_matrix_ema[key].agg(): .6f}  "
                    performance_record_ema[key] = val_matrix_ema[key].agg()
                logger.info(f"\t{val_matrix_info_ema}")
                
                checked_performance_ema = {x:y for x,y in performance_record_ema.items() if "rmse" in x}
                best_performance_ema = max(checked_performance_ema.values())
                if best_performance_ema < local_best_ema:
                    local_best_ema = best_performance_ema
                    local_best_metrics_ema = checked_performance_ema
                    local_best_ep_ema = epoch
                logger.info(f"\t           ValOfEMA:{best_performance_ema:.6f}/{local_best_ema:.6f},  Epoch:{epoch+1}/{local_best_ep_ema+1}")

            # best_performance = max(performance_record)
            checked_performance = {x:y for x,y in performance_record.items() if "rmse" in x}
            best_performance = max(checked_performance.values())
            if best_performance < local_best:  # save best
                local_best = best_performance
                local_best_ep = epoch
                local_best_metrics = checked_performance
                # torch.save(self.model, os.path.join(self.cfg['log_path'], 'ckpt_{}_{}.pt'.format(epoch, round(local_best,4))))
                torch.save(self.model, os.path.join(self.cfg['log_path'], 'ckpt_best.pt'))
            state = {
                "epoch": epoch + 1,
                "model_state": self.model.state_dict(),
                "optimizer_state": self.optim.state_dict(),
                "scheduler_state": self.scheduler.state_dict(),
                "best_performance": local_best,
                "best_epoch":local_best_ep,
                "local_best_metrics": local_best_metrics, 
            }
            torch.save(state, os.path.join(self.cfg['log_path'], 'ckpt_latest.pt'))
            logger.info(f"\tTime(ep):{int(timer.elapsed_time)}s,  Val(curr/best):{best_performance:.6f}/{local_best:.6f},  Epoch(curr/best):{epoch+1}/{local_best_ep+1}")
        
        if val_matrix_ema is not None:
            return local_best, local_best_ep, local_best_ema, local_best_ep_ema, local_best_metrics_ema 
        else:
            return local_best, local_best_ep, local_best_metrics