Upload sentiment analysis model
Browse files- README.md +193 -0
- config.json +41 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: zh
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- sentiment-analysis
|
| 6 |
+
- chinese
|
| 7 |
+
- finance
|
| 8 |
+
- finbert
|
| 9 |
+
- crypto
|
| 10 |
+
- text-classification
|
| 11 |
+
datasets:
|
| 12 |
+
- custom
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- f1
|
| 16 |
+
- precision
|
| 17 |
+
- recall
|
| 18 |
+
model-index:
|
| 19 |
+
- name: Chinese Financial Sentiment Analysis (Crypto)
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: text-classification
|
| 23 |
+
name: Sentiment Analysis
|
| 24 |
+
metrics:
|
| 25 |
+
- type: accuracy
|
| 26 |
+
value: 0.645
|
| 27 |
+
name: Accuracy
|
| 28 |
+
- type: f1
|
| 29 |
+
value: 0.6365
|
| 30 |
+
name: F1 Score
|
| 31 |
+
- type: precision
|
| 32 |
+
value: 0.6394
|
| 33 |
+
name: Precision
|
| 34 |
+
- type: recall
|
| 35 |
+
value: 0.645
|
| 36 |
+
name: Recall
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
# Chinese Financial Sentiment Analysis Model (Crypto Focus)
|
| 40 |
+
|
| 41 |
+
中文金融情感分析模型(加密货币领域)
|
| 42 |
+
|
| 43 |
+
## 模型描述 | Model Description
|
| 44 |
+
|
| 45 |
+
本模型基于 `yiyanghkust/finbert-tone-chinese` 微调,专门用于分析中文加密货币相关新闻和社交媒体内容的情感倾向。模型可以识别三种情感类别:正面(Positive)、中性(Neutral)和负面(Negative)。
|
| 46 |
+
|
| 47 |
+
This model is fine-tuned from `yiyanghkust/finbert-tone-chinese` and specifically designed for sentiment analysis of Chinese cryptocurrency-related news and social media content. It can classify text into three sentiment categories: Positive, Neutral, and Negative.
|
| 48 |
+
|
| 49 |
+
## 训练数据 | Training Data
|
| 50 |
+
|
| 51 |
+
- **数据量 | Size**: 1000条人工标注的中文金融新闻 | 1000 manually annotated Chinese financial news articles
|
| 52 |
+
- **数据来源 | Source**: 加密货币相关新闻和推文 | Cryptocurrency-related news and tweets
|
| 53 |
+
- **标注方式 | Annotation**: AI辅助 + 人工修正 | AI-assisted + Manual correction
|
| 54 |
+
- **数据分布 | Distribution**:
|
| 55 |
+
- Positive(正面): 420条 (42.0%)
|
| 56 |
+
- Neutral(中性): 420条 (42.0%)
|
| 57 |
+
- Negative(负面): 160条 (16.0%)
|
| 58 |
+
|
| 59 |
+
## 性能指标 | Performance Metrics
|
| 60 |
+
|
| 61 |
+
在200条测试集上的表现 | Performance on 200 test samples:
|
| 62 |
+
|
| 63 |
+
| 指标 Metric | 数值 Value |
|
| 64 |
+
|-------------|-----------|
|
| 65 |
+
| 准确率 Accuracy | 64.50% |
|
| 66 |
+
| F1分数 F1 Score | 63.65% |
|
| 67 |
+
| 精确率 Precision | 63.94% |
|
| 68 |
+
| 召回率 Recall | 64.50% |
|
| 69 |
+
|
| 70 |
+
## 使用方法 | Usage
|
| 71 |
+
|
| 72 |
+
### 快速开始 | Quick Start
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 76 |
+
import torch
|
| 77 |
+
|
| 78 |
+
# 加载模型和分词器 | Load model and tokenizer
|
| 79 |
+
model_name = "YOUR_USERNAME/sentiment-finetuned-1000" # 替换为你的用户名
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 81 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 82 |
+
|
| 83 |
+
# 分析文本 | Analyze text
|
| 84 |
+
text = "比特币突破10万美元创历史新高"
|
| 85 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
|
| 86 |
+
|
| 87 |
+
# 预测 | Predict
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 91 |
+
predicted_class = torch.argmax(predictions, dim=-1).item()
|
| 92 |
+
|
| 93 |
+
# 结果映射 | Result mapping
|
| 94 |
+
labels = ['positive', 'neutral', 'negative']
|
| 95 |
+
sentiment = labels[predicted_class]
|
| 96 |
+
confidence = predictions[0][predicted_class].item()
|
| 97 |
+
|
| 98 |
+
print(f"情感: {sentiment}")
|
| 99 |
+
print(f"置信度: {confidence:.4f}")
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### 批量处理 | Batch Processing
|
| 103 |
+
|
| 104 |
+
```python
|
| 105 |
+
texts = [
|
| 106 |
+
"币安获得阿布扎比监管授权",
|
| 107 |
+
"以太坊完成Fusaka升级",
|
| 108 |
+
"某交易所遭攻击损失100万美元"
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
inputs = tokenizer(texts, return_tensors="pt", truncation=True,
|
| 112 |
+
max_length=128, padding=True)
|
| 113 |
+
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
outputs = model(**inputs)
|
| 116 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 117 |
+
predicted_classes = torch.argmax(predictions, dim=-1)
|
| 118 |
+
|
| 119 |
+
labels = ['positive', 'neutral', 'negative']
|
| 120 |
+
for text, pred in zip(texts, predicted_classes):
|
| 121 |
+
print(f"{text} -> {labels[pred]}")
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## 训练参数 | Training Configuration
|
| 125 |
+
|
| 126 |
+
- **基础模型 | Base Model**: yiyanghkust/finbert-tone-chinese
|
| 127 |
+
- **训练轮数 | Epochs**: 5
|
| 128 |
+
- **批次大小 | Batch Size**: 16
|
| 129 |
+
- **学习率 | Learning Rate**: 2e-5
|
| 130 |
+
- **最大序列长度 | Max Length**: 128
|
| 131 |
+
- **训练设备 | Device**: NVIDIA GeForce RTX 3060 Laptop GPU
|
| 132 |
+
- **训练时间 | Training Time**: ~5分钟 | ~5 minutes
|
| 133 |
+
|
| 134 |
+
## 适用场景 | Use Cases
|
| 135 |
+
|
| 136 |
+
- ✅ 加密货币新闻情感分析
|
| 137 |
+
- ✅ 社交媒体舆情监控
|
| 138 |
+
- ✅ 金融市场情绪指标
|
| 139 |
+
- ✅ 实时新闻情感跟踪
|
| 140 |
+
- ✅ 投资决策辅助参考
|
| 141 |
+
|
| 142 |
+
## 局限性 | Limitations
|
| 143 |
+
|
| 144 |
+
- ⚠️ 主要针对加密货币领域的金融新闻,其他金融领域可能表现不佳
|
| 145 |
+
- ⚠️ 负面样本相对较少(16%),对负面情感的识别可能不够敏感
|
| 146 |
+
- ⚠️ 短文本(少于10字)的分析准确率可能下降
|
| 147 |
+
- ⚠️ 仅支持简体中文
|
| 148 |
+
- ⚠️ 模型不能替代人工判断,仅供参考
|
| 149 |
+
|
| 150 |
+
## 许可证 | License
|
| 151 |
+
|
| 152 |
+
Apache-2.0
|
| 153 |
+
|
| 154 |
+
## 引用 | Citation
|
| 155 |
+
|
| 156 |
+
如果使用本模型,请引用:
|
| 157 |
+
|
| 158 |
+
```bibtex
|
| 159 |
+
@misc{watchtower-sentiment-2025,
|
| 160 |
+
title={Chinese Financial Sentiment Analysis Model (Crypto Focus)},
|
| 161 |
+
author={WatchTower Team},
|
| 162 |
+
year={2025},
|
| 163 |
+
howpublished={\url{https://huggingface.co/YOUR_USERNAME/sentiment-finetuned-1000}},
|
| 164 |
+
note={Fine-tuned from yiyanghkust/finbert-tone-chinese}
|
| 165 |
+
}
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## 基础模型 | Base Model
|
| 169 |
+
|
| 170 |
+
本模型基于以下模型微调:
|
| 171 |
+
- [yiyanghkust/finbert-tone-chinese](https://huggingface.co/yiyanghkust/finbert-tone-chinese)
|
| 172 |
+
|
| 173 |
+
感谢原作者的贡献!
|
| 174 |
+
|
| 175 |
+
## 更新日志 | Changelog
|
| 176 |
+
|
| 177 |
+
### v2.0 (2025-12-09)
|
| 178 |
+
- ✅ 扩充训练数据至1000条
|
| 179 |
+
- ✅ 修正标注错误,提升数据质量
|
| 180 |
+
- ✅ 优化类别分布,提升模型平衡性
|
| 181 |
+
- ✅ F1分数提升2.01%(0.6165 → 0.6365)
|
| 182 |
+
|
| 183 |
+
### v1.0 (Initial Release)
|
| 184 |
+
- 基于500条标注数据的初始版本
|
| 185 |
+
|
| 186 |
+
## 联系方式 | Contact
|
| 187 |
+
|
| 188 |
+
如有问题或建议,欢迎提 issue 或 PR。
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
**维护者 | Maintainer**: WatchTower Team
|
| 193 |
+
**最后更新 | Last Updated**: 2025-12-09
|
config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"directionality": "bidi",
|
| 8 |
+
"dtype": "float32",
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "Neutral",
|
| 14 |
+
"1": "Positive",
|
| 15 |
+
"2": "Negative"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"Negative": 2,
|
| 21 |
+
"Neutral": 0,
|
| 22 |
+
"Positive": 1
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"pad_token_id": 0,
|
| 30 |
+
"pooler_fc_size": 768,
|
| 31 |
+
"pooler_num_attention_heads": 12,
|
| 32 |
+
"pooler_num_fc_layers": 3,
|
| 33 |
+
"pooler_size_per_head": 128,
|
| 34 |
+
"pooler_type": "first_token_transform",
|
| 35 |
+
"position_embedding_type": "absolute",
|
| 36 |
+
"problem_type": "single_label_classification",
|
| 37 |
+
"transformers_version": "4.57.3",
|
| 38 |
+
"type_vocab_size": 2,
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"vocab_size": 21128
|
| 41 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:201a42ab8939395ab1923d8eb7bd5505c645a8331572e4cec417007a7853e761
|
| 3 |
+
size 409103316
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"sep_token": "[SEP]",
|
| 54 |
+
"strip_accents": null,
|
| 55 |
+
"tokenize_chinese_chars": true,
|
| 56 |
+
"tokenizer_class": "BertTokenizer",
|
| 57 |
+
"unk_token": "[UNK]"
|
| 58 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92dfe961fb52dc1b69afe75a1a36ee5850f2525ca6066e2863f577c3d75cba51
|
| 3 |
+
size 5841
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|