metadata
base_model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
datasets:
- Omartificial-Intelligence-Space/Arabic-stsb
- Omartificial-Intelligence-Space/Arabic-NLi-Pair-Class
language:
- ar
library_name: sentence-transformers
license: apache-2.0
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: feature-extraction
tags:
- mteb
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:947818
- loss:SoftmaxLoss
- loss:CosineSimilarityLoss
- transformers
widget:
- source_sentence: امرأة تكتب شيئاً
sentences:
- مراهق يتحدث إلى فتاة عبر كاميرا الإنترنت
- امرأة تقطع البصل الأخضر.
- مجموعة من كبار السن يتظاهرون حول طاولة الطعام.
- source_sentence: تتشكل النجوم في مناطق تكوين النجوم، والتي تنشأ نفسها من السحب الجزيئية.
sentences:
- لاعب كرة السلة على وشك تسجيل نقاط لفريقه.
- المقال التالي مأخوذ من نسختي من "أطلس البطريق الجديد للتاريخ الوسطى"
- قد يكون من الممكن أن يوجد نظام شمسي مثل نظامنا خارج المجرة
- source_sentence: >-
تحت السماء الزرقاء مع الغيوم البيضاء، يصل طفل لمس مروحة طائرة واقفة على
حقل من العشب.
sentences:
- امرأة تحمل كأساً
- طفل يحاول لمس مروحة طائرة
- اثنان من عازبين عن الشرب يستعدون للعشاء
- source_sentence: رجل في منتصف العمر يحلق لحيته في غرفة ذات جدران بيضاء والتي لا تبدو كحمام
sentences:
- فتى يخطط اسمه على مكتبه
- رجل ينام
- المرأة وحدها وهي نائمة في غرفة نومها
- source_sentence: الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.
sentences:
- شخص طويل القامة
- المرأة تنظر من النافذة.
- لقد مات الكلب
model-index:
- name: Omartificial-Intelligence-Space/GATE-AraBert-v1
results:
- task:
type: STS
dataset:
name: MTEB STS17 (ar-ar)
type: mteb/sts17-crosslingual-sts
config: ar-ar
split: test
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
metrics:
- type: cosine_pearson
value: 82.06597171670848
- type: cosine_spearman
value: 82.7809395809498
- type: euclidean_pearson
value: 79.23996991139896
- type: euclidean_spearman
value: 81.5287595404711
- type: main_score
value: 82.7809395809498
- type: manhattan_pearson
value: 78.95407006608013
- type: manhattan_spearman
value: 81.15109493737467
- task:
type: STS
dataset:
name: MTEB STS22.v2 (ar)
type: mteb/sts22-crosslingual-sts
config: ar
split: test
revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd
metrics:
- type: cosine_pearson
value: 54.912880452465004
- type: cosine_spearman
value: 63.09788380910325
- type: euclidean_pearson
value: 57.92665617677832
- type: euclidean_spearman
value: 62.76032598469037
- type: main_score
value: 63.09788380910325
- type: manhattan_pearson
value: 58.0736648155273
- type: manhattan_spearman
value: 62.94190582776664
- task:
type: STS
dataset:
name: MTEB STS22 (ar)
type: mteb/sts22-crosslingual-sts
config: ar
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cosine_pearson
value: 51.72534929358701
- type: cosine_spearman
value: 59.75149627160101
- type: euclidean_pearson
value: 53.894835373598774
- type: euclidean_spearman
value: 59.44278354697161
- type: main_score
value: 59.75149627160101
- type: manhattan_pearson
value: 54.076675975406985
- type: manhattan_spearman
value: 59.610061143235725
GATE-AraBert-V1
This is GATE | General Arabic Text Embedding trained using SentenceTransformers in a multi-task setup. The system trains on the AllNLI and on the STS dataset. It is described in detail in the paper GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Hybrid Loss Training.
Project page: https://huggingface.co/collections/Omartificial-Intelligence-Space/arabic-matryoshka-embedding-models-666f764d3b570f44d7f77d4e
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: ar
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Omartificial-Intelligence-Space/GATE-AraBert-v1")
# Run inference
sentences = [
'الكلب البني مستلقي على جانبه على سجادة بيج، مع جسم أخضر في المقدمة.',
'لقد مات الكلب',
'شخص طويل القامة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
| Model | Dim | # Params. | STS17 | STS22-v2 | Average |
|---|---|---|---|---|---|
| Arabic-Triplet-Matryoshka-V2 | 768 | 135M | 85 | 64 | 75 |
| Arabert-all-nli-triplet-Matryoshka | 768 | 135M | 83 | 64 | 74 |
| AraGemma-Embedding-300m | 768 | 303M | 84 | 62 | 73 |
| GATE-AraBert-V1 | 767 | 135M | 83 | 63 | 73 |
| Marbert-all-nli-triplet-Matryoshka | 768 | 163M | 82 | 61 | 72 |
| Arabic-labse-Matryoshka | 768 | 471M | 82 | 61 | 72 |
| AraEuroBert-Small | 768 | 210M | 80 | 61 | 71 |
| E5-all-nli-triplet-Matryoshka | 384 | 278M | 80 | 60 | 70 |
| text-embedding-3-large | 3072 | - | 81 | 59 | 70 |
| Arabic-all-nli-triplet-Matryoshka | 768 | 135M | 82 | 54 | 68 |
| AraEuroBert-Mid | 1151 | 610M | 83 | 53 | 68 |
| paraphrase-multilingual-mpnet-base-v2 | 768 | 135M | 79 | 55 | 67 |
| AraEuroBert-Large | 2304 | 2.1B | 79 | 55 | 67 |
| text-embedding-ada-002 | 1536 | - | 71 | 62 | 66 |
| text-embedding-3-small | 1536 | - | 72 | 57 | 65 |
Acknowledgments
The author would like to thank Prince Sultan University for their invaluable support in this project. Their contributions and resources have been instrumental in the development and fine-tuning of these models.
## Citation
If you use the GATE, please cite it as follows:
@article{nacar2025gate,
title={GATE: General Arabic Text Embedding for Enhanced Semantic Textual Similarity with Matryoshka Representation Learning and Hybrid Loss Training},
author={Nacar, Omer and Koubaa, Anis and Sibaee, Serry and Al-Habashi, Yasser and Ammar, Adel and Boulila, Wadii},
journal={arXiv preprint arXiv:2505.24581},
year={2025}
}