Update README with comprehensive usage instructions and Flask API examples
Browse files
README.md
CHANGED
|
@@ -7,48 +7,340 @@ tags:
|
|
| 7 |
- medical
|
| 8 |
- dermatology
|
| 9 |
- image-classification
|
|
|
|
|
|
|
|
|
|
| 10 |
library_name: keras
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# DermaAI
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
- **Domain**: Medical/Dermatology
|
| 26 |
- **Framework**: TensorFlow/Keras
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
```python
|
|
|
|
|
|
|
| 31 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
from huggingface_hub import hf_hub_download
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
#
|
|
|
|
|
|
|
| 38 |
model = tf.keras.models.load_model(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
```
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
##
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
##
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
| 7 |
- medical
|
| 8 |
- dermatology
|
| 9 |
- image-classification
|
| 10 |
+
- skin-disease
|
| 11 |
+
- efficientnet
|
| 12 |
+
- healthcare
|
| 13 |
library_name: keras
|
| 14 |
+
pipeline_tag: image-classification
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# DermaAI - Skin Disease Classification Model
|
| 18 |
|
| 19 |
+
A deep learning model for classifying skin diseases using computer vision. This model can identify 5 different skin conditions with confidence scores and medical recommendations.
|
| 20 |
|
| 21 |
+
## π₯ Supported Skin Conditions
|
| 22 |
|
| 23 |
+
The model can classify the following skin diseases:
|
| 24 |
|
| 25 |
+
1. **Atopic Dermatitis** - A chronic inflammatory skin condition
|
| 26 |
+
2. **Eczema** - Inflammatory skin condition causing red, itchy patches
|
| 27 |
+
3. **Psoriasis** - Autoimmune condition causing scaly skin patches
|
| 28 |
+
4. **Seborrheic Keratoses** - Common benign skin growths
|
| 29 |
+
5. **Tinea Ringworm Candidiasis** - Fungal skin infections
|
| 30 |
|
| 31 |
+
## π§ Model Details
|
| 32 |
+
|
| 33 |
+
- **Model Type**: Keras/TensorFlow model based on EfficientNetV2
|
| 34 |
+
- **Task**: Image Classification (Multi-class)
|
| 35 |
- **Domain**: Medical/Dermatology
|
| 36 |
- **Framework**: TensorFlow/Keras
|
| 37 |
+
- **Input Size**: 224x224x3 (RGB images)
|
| 38 |
+
- **Output**: 5-class probability distribution
|
| 39 |
+
- **Preprocessing**: EfficientNetV2 preprocessing
|
| 40 |
+
|
| 41 |
+
## π Quick Start
|
| 42 |
+
|
| 43 |
+
### Basic Usage
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
import tensorflow as tf
|
| 47 |
+
from huggingface_hub import hf_hub_download
|
| 48 |
+
import numpy as np
|
| 49 |
+
from PIL import Image
|
| 50 |
+
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
|
| 51 |
+
|
| 52 |
+
# Download and load the model
|
| 53 |
+
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
|
| 54 |
+
model = tf.keras.models.load_model(model_path)
|
| 55 |
+
|
| 56 |
+
# Class names
|
| 57 |
+
class_names = [
|
| 58 |
+
'Atopic Dermatitis',
|
| 59 |
+
'Eczema',
|
| 60 |
+
'Psoriasis',
|
| 61 |
+
'Seborrheic Keratoses',
|
| 62 |
+
'Tinea Ringworm Candidiasis'
|
| 63 |
+
]
|
| 64 |
+
|
| 65 |
+
# Prediction function
|
| 66 |
+
def predict_skin_condition(image_path):
|
| 67 |
+
# Load and preprocess image
|
| 68 |
+
image = Image.open(image_path).convert('RGB')
|
| 69 |
+
image = image.resize((224, 224))
|
| 70 |
+
image_array = np.array(image)
|
| 71 |
+
image_array = preprocess_input(image_array)
|
| 72 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 73 |
+
|
| 74 |
+
# Make prediction
|
| 75 |
+
predictions = model.predict(image_array)
|
| 76 |
+
predicted_class_index = np.argmax(predictions[0])
|
| 77 |
+
predicted_class = class_names[predicted_class_index]
|
| 78 |
+
confidence = predictions[0][predicted_class_index] * 100
|
| 79 |
+
|
| 80 |
+
return predicted_class, confidence
|
| 81 |
+
|
| 82 |
+
# Example usage
|
| 83 |
+
prediction, confidence = predict_skin_condition("path/to/your/image.jpg")
|
| 84 |
+
print(f"Prediction: {prediction} ({confidence:.2f}% confidence)")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## π Flask API Usage
|
| 88 |
+
|
| 89 |
+
Create a complete web API for skin disease classification:
|
| 90 |
|
| 91 |
+
### 1. Install Dependencies
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
pip install flask numpy tensorflow pillow flask-cors huggingface-hub
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### 2. Create Flask Application (`app.py`)
|
| 98 |
|
| 99 |
```python
|
| 100 |
+
from flask import Flask, request, jsonify
|
| 101 |
+
import numpy as np
|
| 102 |
import tensorflow as tf
|
| 103 |
+
import base64
|
| 104 |
+
import io
|
| 105 |
+
from PIL import Image
|
| 106 |
+
from flask_cors import CORS
|
| 107 |
+
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
|
| 108 |
from huggingface_hub import hf_hub_download
|
| 109 |
|
| 110 |
+
app = Flask(__name__)
|
| 111 |
+
CORS(app)
|
| 112 |
|
| 113 |
+
# Download and load the model from Hugging Face
|
| 114 |
+
print("Downloading model from Hugging Face...")
|
| 115 |
+
model_path = hf_hub_download(repo_id="Siraja704/DermaAI", filename="DermaAI.keras")
|
| 116 |
model = tf.keras.models.load_model(model_path)
|
| 117 |
+
print("β
Model loaded successfully!")
|
| 118 |
+
|
| 119 |
+
# Class names
|
| 120 |
+
class_names = [
|
| 121 |
+
'Atopic Dermatitis',
|
| 122 |
+
'Eczema',
|
| 123 |
+
'Psoriasis',
|
| 124 |
+
'Seborrheic Keratoses',
|
| 125 |
+
'Tinea Ringworm Candidiasis'
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
@app.route('/predict', methods=['POST'])
|
| 129 |
+
def predict():
|
| 130 |
+
try:
|
| 131 |
+
data = request.json
|
| 132 |
+
if not data or 'image' not in data:
|
| 133 |
+
return jsonify({'error': 'No image data provided'}), 400
|
| 134 |
+
|
| 135 |
+
# Process base64 image
|
| 136 |
+
image_data = data['image']
|
| 137 |
+
if 'base64,' in image_data:
|
| 138 |
+
image_data = image_data.split('base64,')[1]
|
| 139 |
+
|
| 140 |
+
# Decode and preprocess image
|
| 141 |
+
decoded_image = base64.b64decode(image_data)
|
| 142 |
+
image = Image.open(io.BytesIO(decoded_image)).convert('RGB')
|
| 143 |
+
image = image.resize((224, 224))
|
| 144 |
+
image_array = np.array(image)
|
| 145 |
+
image_array = preprocess_input(image_array)
|
| 146 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 147 |
+
|
| 148 |
+
# Make prediction
|
| 149 |
+
predictions = model.predict(image_array)
|
| 150 |
+
predicted_class_index = int(np.argmax(predictions[0]))
|
| 151 |
+
predicted_class = class_names[predicted_class_index]
|
| 152 |
+
confidence = float(predictions[0][predicted_class_index] * 100)
|
| 153 |
+
|
| 154 |
+
# Get top alternatives
|
| 155 |
+
top_indices = np.argsort(predictions[0])[-3:][::-1]
|
| 156 |
+
top_predictions = [
|
| 157 |
+
{
|
| 158 |
+
'class': class_names[i],
|
| 159 |
+
'confidence': float(predictions[0][i] * 100)
|
| 160 |
+
}
|
| 161 |
+
for i in top_indices if i != predicted_class_index
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
# Generate medical recommendation
|
| 165 |
+
if confidence < 10:
|
| 166 |
+
recommendation = "Very low confidence. Please retake image with better lighting and focus."
|
| 167 |
+
elif confidence < 30:
|
| 168 |
+
recommendation = "Low confidence. Preliminary result only. Consult a dermatologist."
|
| 169 |
+
elif confidence < 60:
|
| 170 |
+
recommendation = "Moderate confidence. Consider alternatives and consult healthcare professional."
|
| 171 |
+
else:
|
| 172 |
+
recommendation = "High confidence prediction. Always consult healthcare professional for confirmation."
|
| 173 |
|
| 174 |
+
return jsonify({
|
| 175 |
+
'prediction': predicted_class,
|
| 176 |
+
'confidence': round(confidence, 2),
|
| 177 |
+
'all_confidences': {
|
| 178 |
+
class_names[i]: float(pred * 100) for i, pred in enumerate(predictions[0])
|
| 179 |
+
},
|
| 180 |
+
'top_alternatives': top_predictions,
|
| 181 |
+
'recommendation': recommendation
|
| 182 |
+
})
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
return jsonify({'error': str(e)}), 500
|
| 186 |
+
|
| 187 |
+
@app.route('/health', methods=['GET'])
|
| 188 |
+
def health():
|
| 189 |
+
return jsonify({'status': 'healthy', 'model_loaded': True})
|
| 190 |
+
|
| 191 |
+
if __name__ == '__main__':
|
| 192 |
+
app.run(host='0.0.0.0', port=5001, debug=True)
|
| 193 |
```
|
| 194 |
|
| 195 |
+
### 3. Run the API
|
| 196 |
+
|
| 197 |
+
```bash
|
| 198 |
+
python app.py
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
The API will be available at `http://localhost:5001`
|
| 202 |
+
|
| 203 |
+
### 4. API Usage Examples
|
| 204 |
|
| 205 |
+
**Python Client:**
|
| 206 |
+
```python
|
| 207 |
+
import requests
|
| 208 |
+
import base64
|
| 209 |
+
|
| 210 |
+
def predict_image(image_path, api_url="http://localhost:5001/predict"):
|
| 211 |
+
with open(image_path, "rb") as image_file:
|
| 212 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 213 |
+
|
| 214 |
+
data = {"image": f"data:image/jpeg;base64,{encoded_string}"}
|
| 215 |
+
response = requests.post(api_url, json=data)
|
| 216 |
+
return response.json()
|
| 217 |
+
|
| 218 |
+
# Usage
|
| 219 |
+
result = predict_image("skin_image.jpg")
|
| 220 |
+
print(f"Prediction: {result['prediction']} ({result['confidence']}%)")
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
**JavaScript Client:**
|
| 224 |
+
```javascript
|
| 225 |
+
async function predictSkinCondition(imageFile) {
|
| 226 |
+
const base64 = await new Promise((resolve) => {
|
| 227 |
+
const reader = new FileReader();
|
| 228 |
+
reader.onload = () => resolve(reader.result);
|
| 229 |
+
reader.readAsDataURL(imageFile);
|
| 230 |
+
});
|
| 231 |
+
|
| 232 |
+
const response = await fetch('http://localhost:5001/predict', {
|
| 233 |
+
method: 'POST',
|
| 234 |
+
headers: {'Content-Type': 'application/json'},
|
| 235 |
+
body: JSON.stringify({image: base64})
|
| 236 |
+
});
|
| 237 |
+
|
| 238 |
+
return await response.json();
|
| 239 |
+
}
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
**cURL:**
|
| 243 |
+
```bash
|
| 244 |
+
curl -X POST http://localhost:5001/predict \
|
| 245 |
+
-H "Content-Type: application/json" \
|
| 246 |
+
-d '{"image": "_BASE64_IMAGE_HERE"}'
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
## π API Response Format
|
| 250 |
+
|
| 251 |
+
```json
|
| 252 |
+
{
|
| 253 |
+
"prediction": "Eczema",
|
| 254 |
+
"confidence": 85.23,
|
| 255 |
+
"all_confidences": {
|
| 256 |
+
"Atopic Dermatitis": 12.45,
|
| 257 |
+
"Eczema": 85.23,
|
| 258 |
+
"Psoriasis": 1.32,
|
| 259 |
+
"Seborrheic Keratoses": 0.67,
|
| 260 |
+
"Tinea Ringworm Candidiasis": 0.33
|
| 261 |
+
},
|
| 262 |
+
"top_alternatives": [
|
| 263 |
+
{
|
| 264 |
+
"class": "Atopic Dermatitis",
|
| 265 |
+
"confidence": 12.45
|
| 266 |
+
}
|
| 267 |
+
],
|
| 268 |
+
"recommendation": "High confidence prediction. Always consult healthcare professional for confirmation."
|
| 269 |
+
}
|
| 270 |
+
```
|
| 271 |
+
|
| 272 |
+
## πΌοΈ Image Requirements
|
| 273 |
+
|
| 274 |
+
- **Formats**: JPG, PNG, WebP, and other common formats
|
| 275 |
+
- **Size**: Automatically resized to 224x224 pixels
|
| 276 |
+
- **Quality**: High-resolution images with good lighting work best
|
| 277 |
+
- **Focus**: Ensure affected skin area is clearly visible
|
| 278 |
+
|
| 279 |
+
## π³ Docker Deployment
|
| 280 |
+
|
| 281 |
+
**Dockerfile:**
|
| 282 |
+
```dockerfile
|
| 283 |
+
FROM python:3.9-slim
|
| 284 |
+
|
| 285 |
+
WORKDIR /app
|
| 286 |
+
COPY requirements.txt .
|
| 287 |
+
RUN pip install -r requirements.txt
|
| 288 |
+
COPY app.py .
|
| 289 |
+
EXPOSE 5001
|
| 290 |
+
CMD ["python", "app.py"]
|
| 291 |
+
```
|
| 292 |
+
|
| 293 |
+
**Requirements.txt:**
|
| 294 |
+
```txt
|
| 295 |
+
flask>=2.0.0
|
| 296 |
+
numpy>=1.21.0
|
| 297 |
+
tensorflow>=2.13.0
|
| 298 |
+
pillow>=9.0.0
|
| 299 |
+
flask-cors>=3.0.0
|
| 300 |
+
huggingface-hub>=0.20.0
|
| 301 |
+
```
|
| 302 |
+
|
| 303 |
+
**Build and Run:**
|
| 304 |
+
```bash
|
| 305 |
+
docker build -t dermaai-api .
|
| 306 |
+
docker run -p 5001:5001 dermaai-api
|
| 307 |
+
```
|
| 308 |
+
|
| 309 |
+
## βοΈ Important Medical Disclaimer
|
| 310 |
+
|
| 311 |
+
**This model is for educational and research purposes only. It should NOT be used as a substitute for professional medical diagnosis or treatment. Always consult qualified healthcare professionals for proper medical evaluation and treatment of skin conditions.**
|
| 312 |
+
|
| 313 |
+
## π Performance Notes
|
| 314 |
+
|
| 315 |
+
- **Input**: 224x224 RGB images
|
| 316 |
+
- **Preprocessing**: EfficientNetV2 normalization
|
| 317 |
+
- **Architecture**: Based on EfficientNetV2
|
| 318 |
+
- **Classes**: 5 skin disease categories
|
| 319 |
+
- **Confidence Levels**:
|
| 320 |
+
- Low: < 30% (requires professional consultation)
|
| 321 |
+
- Moderate: 30-60% (consider alternatives)
|
| 322 |
+
- High: > 60% (still requires medical confirmation)
|
| 323 |
+
|
| 324 |
+
## π€ Citation
|
| 325 |
+
|
| 326 |
+
If you use this model in your research or applications, please cite appropriately:
|
| 327 |
+
|
| 328 |
+
```bibtex
|
| 329 |
+
@misc{dermaai2024,
|
| 330 |
+
title={DermaAI: Deep Learning Model for Skin Disease Classification},
|
| 331 |
+
author={Siraja704},
|
| 332 |
+
year={2024},
|
| 333 |
+
publisher={Hugging Face},
|
| 334 |
+
url={https://huggingface.co/Siraja704/DermaAI}
|
| 335 |
+
}
|
| 336 |
+
```
|
| 337 |
|
| 338 |
+
## π License
|
| 339 |
|
| 340 |
+
Licensed under the Apache 2.0 License. See the LICENSE file for details.
|
| 341 |
|
| 342 |
+
## π Links
|
| 343 |
|
| 344 |
+
- **Model Repository**: [Siraja704/DermaAI](https://huggingface.co/Siraja704/DermaAI)
|
| 345 |
+
- **Framework**: [TensorFlow](https://tensorflow.org)
|
| 346 |
+
- **Base Architecture**: [EfficientNetV2](https://arxiv.org/abs/2104.00298)
|