|
|
import os |
|
|
import subprocess |
|
|
|
|
|
import numpy as np |
|
|
from rdkit.Chem import AllChem, RemoveHs, RemoveAllHs |
|
|
|
|
|
from datasets.process_mols import write_mol_with_coords, read_molecule |
|
|
import re |
|
|
|
|
|
from utils.utils import remove_all_hs |
|
|
|
|
|
|
|
|
def read_gnina_metrics(gnina_sdf_path): |
|
|
with open(gnina_sdf_path, 'r') as f: |
|
|
pattern = re.compile(r'> <(.*?)>\n(.*?)\n') |
|
|
content = f.read() |
|
|
matches = pattern.findall(content) |
|
|
metrics = {k: v for k, v in matches} |
|
|
return metrics |
|
|
|
|
|
|
|
|
def read_gnina_score(gnina_sdf_path): |
|
|
with open(gnina_sdf_path, 'r') as f: |
|
|
pattern = re.compile(r'> <CNNscore>\n(.*?)\n') |
|
|
content = f.read() |
|
|
matches = pattern.findall(content) |
|
|
return float(matches[0]) |
|
|
|
|
|
|
|
|
def invert_permutation(p): |
|
|
"""Return an array s with which np.array_equal(arr[p][s], arr) is True. |
|
|
The array_like argument p must be some permutation of 0, 1, ..., len(p)-1. |
|
|
""" |
|
|
p = np.asanyarray(p) |
|
|
s = np.empty_like(p) |
|
|
s[p] = np.arange(p.size) |
|
|
return s |
|
|
|
|
|
|
|
|
def get_gnina_poses(args, mol, pos, orig_center, name, folder, gnina_path, thread_id=0): |
|
|
|
|
|
out_dir = args.out_dir if hasattr(args, 'out_dir') else args.inference_out_dir |
|
|
rec_path = os.path.join(folder, name[:6] + '_protein_chain_removed.pdb') |
|
|
pred_lig_path = os.path.join(out_dir, f'pred_{name}_tid{thread_id}_lig.sdf') |
|
|
|
|
|
if not os.path.exists(os.path.dirname(pred_lig_path)): |
|
|
os.mkdir(os.path.dirname(pred_lig_path)) |
|
|
|
|
|
print(f'Ligand path {pred_lig_path}') |
|
|
write_mol_with_coords(mol, pos + orig_center, pred_lig_path) |
|
|
gnina_pred_path = os.path.join(out_dir, f'gnina_{name}_tid{thread_id}_lig.sdf') |
|
|
|
|
|
gnina_logs_dir = os.path.join(out_dir, "gnina_logs") |
|
|
|
|
|
with open(os.path.join(gnina_logs_dir, f'{name}'), "w+") as f: |
|
|
if args.gnina_full_dock: |
|
|
return_code = subprocess.run( |
|
|
f'{gnina_path} -r {rec_path} -l "{pred_lig_path}" --autobox_ligand "{pred_lig_path}" -o "{gnina_pred_path}" --no_gpu --autobox_add {args.gnina_autobox_add}', |
|
|
shell=True, stdout=f, stderr=f) |
|
|
else: |
|
|
return_code = subprocess.run( |
|
|
f'{gnina_path} --receptor {rec_path} --ligand "{pred_lig_path}" --minimize -o "{gnina_pred_path}"', |
|
|
shell=True, stdout=f, stderr=f) |
|
|
|
|
|
|
|
|
try: |
|
|
gnina_mol = RemoveAllHs(read_molecule(gnina_pred_path, remove_hs=True, sanitize=True)) |
|
|
gnina_minimized_ligand_pos = np.array(gnina_mol.GetConformer(0).GetPositions()) |
|
|
gnina_atoms = np.array([atom.GetSymbol() for atom in gnina_mol.GetAtoms()]) |
|
|
gnina_filter_Hs = np.where(gnina_atoms != 'H') |
|
|
gnina_ligand_pos = gnina_minimized_ligand_pos[gnina_filter_Hs] - orig_center |
|
|
|
|
|
try: |
|
|
gnina_score = read_gnina_score(gnina_pred_path) |
|
|
if gnina_score is None: |
|
|
gnina_score = 0 |
|
|
except Exception as e: |
|
|
print(f'Error reading gnina score: {e}') |
|
|
gnina_score = 0 |
|
|
|
|
|
except Exception as e: |
|
|
print(f'Error when running gnina with {name} to minimize energy') |
|
|
print('Error:', e) |
|
|
print('Using score model output pos instead.') |
|
|
gnina_ligand_pos = pos |
|
|
gnina_mol = RemoveAllHs(mol) |
|
|
gnina_score = 0 |
|
|
|
|
|
return gnina_ligand_pos, gnina_mol, gnina_score |
|
|
|