Create modeling_wavtokenizer.py
Browse files- modeling_wavtokenizer.py +813 -0
modeling_wavtokenizer.py
ADDED
|
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
WavTokenizer Model for HuggingFace Transformers
|
| 3 |
+
|
| 4 |
+
This module contains the complete implementation of WavTokenizer,
|
| 5 |
+
an acoustic discrete codec tokenizer for audio language modeling.
|
| 6 |
+
All dependencies are included to avoid external imports.
|
| 7 |
+
|
| 8 |
+
The architecture follows the original WavTokenizer implementation:
|
| 9 |
+
- Encoder: Strided convolutions for audio compression
|
| 10 |
+
- VQ: Vector quantization with single codebook
|
| 11 |
+
- Decoder: Vocos-style backbone with ConvNeXt blocks + iSTFT head
|
| 12 |
+
|
| 13 |
+
Reference: https://github.com/jishengpeng/WavTokenizer
|
| 14 |
+
Paper: "WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling"
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from torch import Tensor
|
| 25 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 26 |
+
|
| 27 |
+
from transformers import PreTrainedModel
|
| 28 |
+
from transformers.tokenization_utils import BatchEncoding
|
| 29 |
+
|
| 30 |
+
from .configuration_wavtokenizer import WavTokenizerConfig
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# ==============================================================================
|
| 34 |
+
# Utility Functions
|
| 35 |
+
# ==============================================================================
|
| 36 |
+
|
| 37 |
+
def convert_audio(wav: Tensor, sr: int, target_sr: int, target_channels: int) -> Tensor:
|
| 38 |
+
"""
|
| 39 |
+
Convert audio to target sample rate and number of channels.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
wav: Input waveform [C, T] or [T]
|
| 43 |
+
sr: Source sample rate
|
| 44 |
+
target_sr: Target sample rate
|
| 45 |
+
target_channels: Target number of channels (1 for mono, 2 for stereo)
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
Converted waveform [target_channels, T']
|
| 49 |
+
"""
|
| 50 |
+
import torchaudio
|
| 51 |
+
|
| 52 |
+
# Ensure 2D
|
| 53 |
+
if wav.dim() == 1:
|
| 54 |
+
wav = wav.unsqueeze(0)
|
| 55 |
+
|
| 56 |
+
# Convert channels
|
| 57 |
+
if wav.size(0) > target_channels:
|
| 58 |
+
wav = wav.mean(dim=0, keepdim=True)
|
| 59 |
+
elif wav.size(0) < target_channels:
|
| 60 |
+
wav = wav.expand(target_channels, -1)
|
| 61 |
+
|
| 62 |
+
# Resample if needed
|
| 63 |
+
if sr != target_sr:
|
| 64 |
+
wav = torchaudio.functional.resample(wav, sr, target_sr)
|
| 65 |
+
|
| 66 |
+
return wav
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# ==============================================================================
|
| 70 |
+
# Encoder Components (DAC-style)
|
| 71 |
+
# ==============================================================================
|
| 72 |
+
|
| 73 |
+
def WNConv1d(*args, **kwargs):
|
| 74 |
+
"""Weight-normalized Conv1d."""
|
| 75 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def WNConvTranspose1d(*args, **kwargs):
|
| 79 |
+
"""Weight-normalized ConvTranspose1d."""
|
| 80 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class ResidualUnit(nn.Module):
|
| 84 |
+
"""Residual unit with dilated convolution."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, dim: int = 16, dilation: int = 1):
|
| 87 |
+
super().__init__()
|
| 88 |
+
pad = ((7 - 1) * dilation) // 2
|
| 89 |
+
self.block = nn.Sequential(
|
| 90 |
+
nn.ELU(),
|
| 91 |
+
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
| 92 |
+
nn.ELU(),
|
| 93 |
+
WNConv1d(dim, dim, kernel_size=1),
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 97 |
+
return x + self.block(x)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class EncoderBlock(nn.Module):
|
| 101 |
+
"""Encoder block with residual units and downsampling."""
|
| 102 |
+
|
| 103 |
+
def __init__(self, dim: int = 16, stride: int = 1):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.block = nn.Sequential(
|
| 106 |
+
ResidualUnit(dim // 2, dilation=1),
|
| 107 |
+
ResidualUnit(dim // 2, dilation=3),
|
| 108 |
+
ResidualUnit(dim // 2, dilation=9),
|
| 109 |
+
nn.ELU(),
|
| 110 |
+
WNConv1d(
|
| 111 |
+
dim // 2, dim,
|
| 112 |
+
kernel_size=2 * stride,
|
| 113 |
+
stride=stride,
|
| 114 |
+
padding=math.ceil(stride / 2),
|
| 115 |
+
),
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 119 |
+
return self.block(x)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class Encoder(nn.Module):
|
| 123 |
+
"""
|
| 124 |
+
DAC-style encoder that compresses waveform to latent representation.
|
| 125 |
+
Uses strided convolutions for downsampling.
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
def __init__(
|
| 129 |
+
self,
|
| 130 |
+
d_model: int = 64,
|
| 131 |
+
strides: List[int] = [8, 5, 4, 2],
|
| 132 |
+
d_latent: int = 512,
|
| 133 |
+
):
|
| 134 |
+
super().__init__()
|
| 135 |
+
|
| 136 |
+
# Initial conv
|
| 137 |
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
| 138 |
+
|
| 139 |
+
# Encoder blocks with increasing channels
|
| 140 |
+
for stride in strides:
|
| 141 |
+
d_model *= 2
|
| 142 |
+
self.block.append(EncoderBlock(d_model, stride=stride))
|
| 143 |
+
|
| 144 |
+
# Final projection
|
| 145 |
+
self.block.extend([
|
| 146 |
+
nn.ELU(),
|
| 147 |
+
WNConv1d(d_model, d_latent, kernel_size=3, padding=1),
|
| 148 |
+
])
|
| 149 |
+
|
| 150 |
+
self.block = nn.Sequential(*self.block)
|
| 151 |
+
self.enc_dim = d_model
|
| 152 |
+
|
| 153 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 154 |
+
return self.block(x)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# ==============================================================================
|
| 158 |
+
# Vector Quantization
|
| 159 |
+
# ==============================================================================
|
| 160 |
+
|
| 161 |
+
class VectorQuantize(nn.Module):
|
| 162 |
+
"""
|
| 163 |
+
Improved vector quantization with EMA codebook updates.
|
| 164 |
+
|
| 165 |
+
Uses L2-normalized codes for better stability.
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
def __init__(
|
| 169 |
+
self,
|
| 170 |
+
input_dim: int,
|
| 171 |
+
codebook_size: int,
|
| 172 |
+
codebook_dim: int,
|
| 173 |
+
commitment: float = 0.25,
|
| 174 |
+
):
|
| 175 |
+
super().__init__()
|
| 176 |
+
|
| 177 |
+
self.input_dim = input_dim
|
| 178 |
+
self.codebook_size = codebook_size
|
| 179 |
+
self.codebook_dim = codebook_dim
|
| 180 |
+
self.commitment = commitment
|
| 181 |
+
|
| 182 |
+
# Projections
|
| 183 |
+
requires_projection = input_dim != codebook_dim
|
| 184 |
+
self.project_in = nn.Linear(input_dim, codebook_dim) if requires_projection else nn.Identity()
|
| 185 |
+
self.project_out = nn.Linear(codebook_dim, input_dim) if requires_projection else nn.Identity()
|
| 186 |
+
|
| 187 |
+
# Codebook
|
| 188 |
+
self.codebook = nn.Embedding(codebook_size, codebook_dim)
|
| 189 |
+
nn.init.uniform_(self.codebook.weight, -1.0 / codebook_size, 1.0 / codebook_size)
|
| 190 |
+
|
| 191 |
+
def forward(self, z: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
| 192 |
+
"""
|
| 193 |
+
Forward pass.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
z: Input [B, D, T]
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
z_q: Quantized [B, D, T]
|
| 200 |
+
commitment_loss: Loss scalar
|
| 201 |
+
indices: Codes [B, T]
|
| 202 |
+
"""
|
| 203 |
+
# [B, D, T] -> [B, T, D]
|
| 204 |
+
z = z.transpose(1, 2)
|
| 205 |
+
z_e = self.project_in(z)
|
| 206 |
+
|
| 207 |
+
# L2 normalize
|
| 208 |
+
z_e_norm = F.normalize(z_e, dim=-1)
|
| 209 |
+
codebook_norm = F.normalize(self.codebook.weight, dim=-1)
|
| 210 |
+
|
| 211 |
+
# Find nearest codes
|
| 212 |
+
dist = (
|
| 213 |
+
z_e_norm.pow(2).sum(-1, keepdim=True)
|
| 214 |
+
+ codebook_norm.pow(2).sum(-1)
|
| 215 |
+
- 2 * torch.einsum('btd,kd->btk', z_e_norm, codebook_norm)
|
| 216 |
+
)
|
| 217 |
+
indices = dist.argmin(dim=-1)
|
| 218 |
+
|
| 219 |
+
# Look up quantized values
|
| 220 |
+
z_q = F.embedding(indices, codebook_norm)
|
| 221 |
+
|
| 222 |
+
# Commitment loss
|
| 223 |
+
commitment_loss = F.mse_loss(z_e_norm, z_q.detach()) * self.commitment
|
| 224 |
+
|
| 225 |
+
# Straight-through
|
| 226 |
+
z_q = z_e_norm + (z_q - z_e_norm).detach()
|
| 227 |
+
|
| 228 |
+
# Project out and transpose back
|
| 229 |
+
z_q = self.project_out(z_q)
|
| 230 |
+
z_q = z_q.transpose(1, 2) # [B, D, T]
|
| 231 |
+
|
| 232 |
+
return z_q, commitment_loss, indices
|
| 233 |
+
|
| 234 |
+
def decode(self, indices: Tensor) -> Tensor:
|
| 235 |
+
"""Decode indices to vectors."""
|
| 236 |
+
codebook = F.normalize(self.codebook.weight, dim=-1)
|
| 237 |
+
z_q = F.embedding(indices, codebook)
|
| 238 |
+
z_q = self.project_out(z_q)
|
| 239 |
+
return z_q.transpose(1, 2)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class ResidualVectorQuantize(nn.Module):
|
| 243 |
+
"""Residual VQ with multiple codebooks (typically 1 for WavTokenizer)."""
|
| 244 |
+
|
| 245 |
+
def __init__(
|
| 246 |
+
self,
|
| 247 |
+
input_dim: int = 512,
|
| 248 |
+
codebook_size: int = 4096,
|
| 249 |
+
codebook_dim: int = 8,
|
| 250 |
+
num_quantizers: int = 1,
|
| 251 |
+
commitment: float = 0.25,
|
| 252 |
+
):
|
| 253 |
+
super().__init__()
|
| 254 |
+
|
| 255 |
+
self.num_quantizers = num_quantizers
|
| 256 |
+
self.quantizers = nn.ModuleList([
|
| 257 |
+
VectorQuantize(input_dim, codebook_size, codebook_dim, commitment)
|
| 258 |
+
for _ in range(num_quantizers)
|
| 259 |
+
])
|
| 260 |
+
|
| 261 |
+
def forward(
|
| 262 |
+
self, z: Tensor, n_quantizers: int = None
|
| 263 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
| 264 |
+
n_q = n_quantizers or self.num_quantizers
|
| 265 |
+
|
| 266 |
+
residual = z
|
| 267 |
+
z_q = torch.zeros_like(z)
|
| 268 |
+
all_indices = []
|
| 269 |
+
all_losses = []
|
| 270 |
+
|
| 271 |
+
for i, quantizer in enumerate(self.quantizers[:n_q]):
|
| 272 |
+
_z_q, loss, indices = quantizer(residual)
|
| 273 |
+
residual = residual - _z_q
|
| 274 |
+
z_q = z_q + _z_q
|
| 275 |
+
all_indices.append(indices)
|
| 276 |
+
all_losses.append(loss)
|
| 277 |
+
|
| 278 |
+
codes = torch.stack(all_indices, dim=0) # [N_q, B, T]
|
| 279 |
+
commitment_loss = sum(all_losses)
|
| 280 |
+
|
| 281 |
+
return z_q, commitment_loss, codes
|
| 282 |
+
|
| 283 |
+
def decode(self, codes: Tensor) -> Tensor:
|
| 284 |
+
"""Decode codes to vectors."""
|
| 285 |
+
if codes.dim() == 2:
|
| 286 |
+
codes = codes.unsqueeze(0)
|
| 287 |
+
|
| 288 |
+
z_q = None
|
| 289 |
+
for i, quantizer in enumerate(self.quantizers[:codes.size(0)]):
|
| 290 |
+
_z_q = quantizer.decode(codes[i])
|
| 291 |
+
z_q = _z_q if z_q is None else z_q + _z_q
|
| 292 |
+
|
| 293 |
+
return z_q
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# ==============================================================================
|
| 297 |
+
# Decoder Components (Vocos-style)
|
| 298 |
+
# ==============================================================================
|
| 299 |
+
|
| 300 |
+
class ConvNeXtBlock(nn.Module):
|
| 301 |
+
"""ConvNeXt block with depthwise conv + pointwise expansion."""
|
| 302 |
+
|
| 303 |
+
def __init__(
|
| 304 |
+
self,
|
| 305 |
+
dim: int,
|
| 306 |
+
intermediate_dim: int,
|
| 307 |
+
kernel_size: int = 7,
|
| 308 |
+
layer_scale_init_value: float = 1e-6,
|
| 309 |
+
):
|
| 310 |
+
super().__init__()
|
| 311 |
+
|
| 312 |
+
padding = (kernel_size - 1) // 2
|
| 313 |
+
self.dwconv = nn.Conv1d(dim, dim, kernel_size, padding=padding, groups=dim)
|
| 314 |
+
self.norm = nn.LayerNorm(dim)
|
| 315 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim)
|
| 316 |
+
self.act = nn.GELU()
|
| 317 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
| 318 |
+
|
| 319 |
+
self.gamma = nn.Parameter(
|
| 320 |
+
layer_scale_init_value * torch.ones(dim)
|
| 321 |
+
) if layer_scale_init_value > 0 else None
|
| 322 |
+
|
| 323 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 324 |
+
residual = x
|
| 325 |
+
x = self.dwconv(x)
|
| 326 |
+
x = x.transpose(1, 2) # [B, T, D]
|
| 327 |
+
x = self.norm(x)
|
| 328 |
+
x = self.pwconv1(x)
|
| 329 |
+
x = self.act(x)
|
| 330 |
+
x = self.pwconv2(x)
|
| 331 |
+
if self.gamma is not None:
|
| 332 |
+
x = self.gamma * x
|
| 333 |
+
x = x.transpose(1, 2) # [B, D, T]
|
| 334 |
+
return residual + x
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
class VocosBackbone(nn.Module):
|
| 338 |
+
"""Vocos backbone with attention and ConvNeXt blocks."""
|
| 339 |
+
|
| 340 |
+
def __init__(
|
| 341 |
+
self,
|
| 342 |
+
input_dim: int,
|
| 343 |
+
dim: int,
|
| 344 |
+
intermediate_dim: int,
|
| 345 |
+
num_blocks: int,
|
| 346 |
+
kernel_size: int = 7,
|
| 347 |
+
layer_scale_init_value: float = 1e-6,
|
| 348 |
+
use_attention: bool = True,
|
| 349 |
+
num_heads: int = 8,
|
| 350 |
+
num_attention_layers: int = 1,
|
| 351 |
+
):
|
| 352 |
+
super().__init__()
|
| 353 |
+
|
| 354 |
+
# Input projection
|
| 355 |
+
self.input_conv = nn.Conv1d(input_dim, dim, kernel_size=7, padding=3)
|
| 356 |
+
self.norm = nn.LayerNorm(dim)
|
| 357 |
+
|
| 358 |
+
# Attention layers
|
| 359 |
+
self.use_attention = use_attention
|
| 360 |
+
if use_attention:
|
| 361 |
+
self.attention = nn.ModuleList([
|
| 362 |
+
nn.MultiheadAttention(dim, num_heads, batch_first=True)
|
| 363 |
+
for _ in range(num_attention_layers)
|
| 364 |
+
])
|
| 365 |
+
self.attn_norms = nn.ModuleList([
|
| 366 |
+
nn.LayerNorm(dim) for _ in range(num_attention_layers)
|
| 367 |
+
])
|
| 368 |
+
|
| 369 |
+
# ConvNeXt blocks
|
| 370 |
+
self.convnext = nn.ModuleList([
|
| 371 |
+
ConvNeXtBlock(dim, intermediate_dim, kernel_size, layer_scale_init_value)
|
| 372 |
+
for _ in range(num_blocks)
|
| 373 |
+
])
|
| 374 |
+
|
| 375 |
+
self.final_norm = nn.LayerNorm(dim)
|
| 376 |
+
|
| 377 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 378 |
+
# Input projection
|
| 379 |
+
x = self.input_conv(x)
|
| 380 |
+
x = x.transpose(1, 2) # [B, T, D]
|
| 381 |
+
x = self.norm(x)
|
| 382 |
+
x = x.transpose(1, 2) # [B, D, T]
|
| 383 |
+
|
| 384 |
+
# Attention
|
| 385 |
+
if self.use_attention:
|
| 386 |
+
for attn, norm in zip(self.attention, self.attn_norms):
|
| 387 |
+
x_t = x.transpose(1, 2) # [B, T, D]
|
| 388 |
+
residual = x_t
|
| 389 |
+
x_t = norm(x_t)
|
| 390 |
+
x_t, _ = attn(x_t, x_t, x_t)
|
| 391 |
+
x_t = residual + x_t
|
| 392 |
+
x = x_t.transpose(1, 2) # [B, D, T]
|
| 393 |
+
|
| 394 |
+
# ConvNeXt blocks
|
| 395 |
+
for block in self.convnext:
|
| 396 |
+
x = block(x)
|
| 397 |
+
|
| 398 |
+
# Final norm
|
| 399 |
+
x = x.transpose(1, 2)
|
| 400 |
+
x = self.final_norm(x)
|
| 401 |
+
x = x.transpose(1, 2)
|
| 402 |
+
|
| 403 |
+
return x
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
class ISTFTHead(nn.Module):
|
| 407 |
+
"""Inverse STFT head for waveform synthesis."""
|
| 408 |
+
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
dim: int,
|
| 412 |
+
n_fft: int,
|
| 413 |
+
hop_length: int,
|
| 414 |
+
padding: str = "center",
|
| 415 |
+
):
|
| 416 |
+
super().__init__()
|
| 417 |
+
|
| 418 |
+
self.n_fft = n_fft
|
| 419 |
+
self.hop_length = hop_length
|
| 420 |
+
self.padding = padding
|
| 421 |
+
|
| 422 |
+
self.out_dim = n_fft // 2 + 1
|
| 423 |
+
self.proj = nn.Conv1d(dim, self.out_dim * 2, kernel_size=1)
|
| 424 |
+
|
| 425 |
+
# Register window buffer
|
| 426 |
+
self.register_buffer(
|
| 427 |
+
"window",
|
| 428 |
+
torch.hann_window(n_fft),
|
| 429 |
+
persistent=False
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 433 |
+
"""
|
| 434 |
+
Args:
|
| 435 |
+
x: [B, D, T]
|
| 436 |
+
Returns:
|
| 437 |
+
wav: [B, 1, T']
|
| 438 |
+
"""
|
| 439 |
+
x = self.proj(x)
|
| 440 |
+
|
| 441 |
+
# Split mag/phase
|
| 442 |
+
mag, phase = x.chunk(2, dim=1)
|
| 443 |
+
|
| 444 |
+
# Process
|
| 445 |
+
mag = torch.exp(mag)
|
| 446 |
+
phase = torch.sin(phase)
|
| 447 |
+
|
| 448 |
+
# Complex spectrum
|
| 449 |
+
S = torch.complex(mag * torch.cos(phase * math.pi), mag * torch.sin(phase * math.pi))
|
| 450 |
+
|
| 451 |
+
# Ensure window is on same device
|
| 452 |
+
window = self.window.to(x.device)
|
| 453 |
+
|
| 454 |
+
# iSTFT
|
| 455 |
+
wav = torch.istft(
|
| 456 |
+
S,
|
| 457 |
+
n_fft=self.n_fft,
|
| 458 |
+
hop_length=self.hop_length,
|
| 459 |
+
window=window,
|
| 460 |
+
center=True,
|
| 461 |
+
normalized=False,
|
| 462 |
+
onesided=True,
|
| 463 |
+
return_complex=False,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
return wav.unsqueeze(1)
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
# ==============================================================================
|
| 470 |
+
# Feature Extractor (Mel Spectrogram)
|
| 471 |
+
# ==============================================================================
|
| 472 |
+
|
| 473 |
+
class MelSpectrogramFeatures(nn.Module):
|
| 474 |
+
"""Extract mel spectrogram features from audio."""
|
| 475 |
+
|
| 476 |
+
def __init__(
|
| 477 |
+
self,
|
| 478 |
+
sample_rate: int = 24000,
|
| 479 |
+
n_fft: int = 1024,
|
| 480 |
+
hop_length: int = 256,
|
| 481 |
+
n_mels: int = 100,
|
| 482 |
+
f_min: float = 0.0,
|
| 483 |
+
f_max: float = None,
|
| 484 |
+
padding: str = "center",
|
| 485 |
+
):
|
| 486 |
+
super().__init__()
|
| 487 |
+
|
| 488 |
+
self.sample_rate = sample_rate
|
| 489 |
+
self.n_fft = n_fft
|
| 490 |
+
self.hop_length = hop_length
|
| 491 |
+
self.n_mels = n_mels
|
| 492 |
+
self.padding = padding
|
| 493 |
+
|
| 494 |
+
# Mel filterbank
|
| 495 |
+
import torchaudio
|
| 496 |
+
mel_fb = torchaudio.functional.melscale_fbanks(
|
| 497 |
+
n_freqs=n_fft // 2 + 1,
|
| 498 |
+
f_min=f_min,
|
| 499 |
+
f_max=f_max or sample_rate // 2,
|
| 500 |
+
n_mels=n_mels,
|
| 501 |
+
sample_rate=sample_rate,
|
| 502 |
+
norm="slaney",
|
| 503 |
+
mel_scale="slaney",
|
| 504 |
+
)
|
| 505 |
+
self.register_buffer("mel_fb", mel_fb, persistent=False)
|
| 506 |
+
self.register_buffer("window", torch.hann_window(n_fft), persistent=False)
|
| 507 |
+
|
| 508 |
+
def forward(self, wav: Tensor) -> Tensor:
|
| 509 |
+
"""
|
| 510 |
+
Args:
|
| 511 |
+
wav: [B, 1, T] or [B, T]
|
| 512 |
+
Returns:
|
| 513 |
+
mel: [B, n_mels, T']
|
| 514 |
+
"""
|
| 515 |
+
if wav.dim() == 3:
|
| 516 |
+
wav = wav.squeeze(1)
|
| 517 |
+
|
| 518 |
+
# STFT
|
| 519 |
+
stft = torch.stft(
|
| 520 |
+
wav,
|
| 521 |
+
n_fft=self.n_fft,
|
| 522 |
+
hop_length=self.hop_length,
|
| 523 |
+
window=self.window.to(wav.device),
|
| 524 |
+
center=True,
|
| 525 |
+
return_complex=True,
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
# Power spectrum
|
| 529 |
+
power = stft.abs().pow(2)
|
| 530 |
+
|
| 531 |
+
# Mel spectrogram
|
| 532 |
+
mel = torch.matmul(self.mel_fb.T.to(power.device), power)
|
| 533 |
+
|
| 534 |
+
# Log scale
|
| 535 |
+
mel = torch.log(mel.clamp(min=1e-5))
|
| 536 |
+
|
| 537 |
+
return mel
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
# ==============================================================================
|
| 541 |
+
# Main WavTokenizer Model
|
| 542 |
+
# ==============================================================================
|
| 543 |
+
|
| 544 |
+
class WavTokenizer(PreTrainedModel):
|
| 545 |
+
"""
|
| 546 |
+
WavTokenizer: Efficient acoustic discrete codec tokenizer.
|
| 547 |
+
|
| 548 |
+
Architecture:
|
| 549 |
+
- Encoder: Strided convolutions for audio compression
|
| 550 |
+
- VQ: Single-codebook vector quantization (4096 codes)
|
| 551 |
+
- Decoder: Vocos backbone (ConvNeXt + attention) + iSTFT head
|
| 552 |
+
|
| 553 |
+
Usage:
|
| 554 |
+
```python
|
| 555 |
+
model = WavTokenizer.from_pretrained("TuKoResearch/WavTokenizerSmall", trust_remote_code=True)
|
| 556 |
+
|
| 557 |
+
# Encode
|
| 558 |
+
features, codes = model.encode_infer(wav, bandwidth_id=torch.tensor([0]))
|
| 559 |
+
|
| 560 |
+
# Decode
|
| 561 |
+
wav_out = model.decode(features, bandwidth_id=torch.tensor([0]))
|
| 562 |
+
|
| 563 |
+
# Or use codes directly
|
| 564 |
+
features = model.codes_to_features(codes)
|
| 565 |
+
wav_out = model.decode(features, bandwidth_id=torch.tensor([0]))
|
| 566 |
+
```
|
| 567 |
+
"""
|
| 568 |
+
|
| 569 |
+
config_class = WavTokenizerConfig
|
| 570 |
+
|
| 571 |
+
def __init__(self, config: WavTokenizerConfig):
|
| 572 |
+
super().__init__(config)
|
| 573 |
+
|
| 574 |
+
self.sample_rate = config.sample_rate
|
| 575 |
+
self.hop_length = config.hop_length
|
| 576 |
+
|
| 577 |
+
# Encoder
|
| 578 |
+
self.encoder = Encoder(
|
| 579 |
+
d_model=config.encoder_dim,
|
| 580 |
+
strides=config.encoder_rates,
|
| 581 |
+
d_latent=config.latent_dim,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
# Quantizer
|
| 585 |
+
self.quantizer = ResidualVectorQuantize(
|
| 586 |
+
input_dim=config.latent_dim,
|
| 587 |
+
codebook_size=config.codebook_size,
|
| 588 |
+
codebook_dim=config.codebook_dim,
|
| 589 |
+
num_quantizers=config.num_quantizers,
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
# Feature projection for decoder
|
| 593 |
+
self.feature_proj = nn.Conv1d(config.latent_dim, config.backbone_dim, 1)
|
| 594 |
+
|
| 595 |
+
# Decoder backbone
|
| 596 |
+
self.backbone = VocosBackbone(
|
| 597 |
+
input_dim=config.backbone_dim,
|
| 598 |
+
dim=config.backbone_dim,
|
| 599 |
+
intermediate_dim=config.backbone_intermediate_dim,
|
| 600 |
+
num_blocks=config.backbone_num_blocks,
|
| 601 |
+
kernel_size=config.backbone_kernel_size,
|
| 602 |
+
layer_scale_init_value=config.backbone_layer_scale_init_value,
|
| 603 |
+
use_attention=config.use_attention,
|
| 604 |
+
num_heads=config.attention_heads,
|
| 605 |
+
num_attention_layers=config.attention_layers,
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# iSTFT head
|
| 609 |
+
self.head = ISTFTHead(
|
| 610 |
+
dim=config.backbone_dim,
|
| 611 |
+
n_fft=config.n_fft,
|
| 612 |
+
hop_length=config.hop_length,
|
| 613 |
+
padding=config.padding,
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
# Bandwidth embedding
|
| 617 |
+
self.bandwidth_emb = nn.Embedding(4, config.backbone_dim)
|
| 618 |
+
|
| 619 |
+
self.post_init()
|
| 620 |
+
|
| 621 |
+
@property
|
| 622 |
+
def vocab_size(self) -> int:
|
| 623 |
+
return self.config.codebook_size
|
| 624 |
+
|
| 625 |
+
@property
|
| 626 |
+
def frame_rate(self) -> float:
|
| 627 |
+
return self.config.sample_rate / self.config.hop_length
|
| 628 |
+
|
| 629 |
+
def encode(
|
| 630 |
+
self, wav: Tensor, bandwidth_id: Tensor = None
|
| 631 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
| 632 |
+
"""
|
| 633 |
+
Encode waveform to quantized features.
|
| 634 |
+
|
| 635 |
+
Args:
|
| 636 |
+
wav: [B, 1, T] or [B, T]
|
| 637 |
+
bandwidth_id: Optional bandwidth ID
|
| 638 |
+
|
| 639 |
+
Returns:
|
| 640 |
+
z_q: Quantized features [B, D, T']
|
| 641 |
+
commitment_loss: VQ loss
|
| 642 |
+
codes: Discrete codes [N_q, B, T']
|
| 643 |
+
"""
|
| 644 |
+
if wav.dim() == 2:
|
| 645 |
+
wav = wav.unsqueeze(1)
|
| 646 |
+
|
| 647 |
+
z = self.encoder(wav)
|
| 648 |
+
z_q, loss, codes = self.quantizer(z)
|
| 649 |
+
|
| 650 |
+
return z_q, loss, codes
|
| 651 |
+
|
| 652 |
+
@torch.no_grad()
|
| 653 |
+
def encode_infer(
|
| 654 |
+
self, wav: Tensor, bandwidth_id: Tensor = None
|
| 655 |
+
) -> Tuple[Tensor, Tensor]:
|
| 656 |
+
"""
|
| 657 |
+
Encode waveform to features and codes (inference).
|
| 658 |
+
|
| 659 |
+
Args:
|
| 660 |
+
wav: [B, 1, T] or [1, T] or [B, T]
|
| 661 |
+
bandwidth_id: Optional bandwidth ID
|
| 662 |
+
|
| 663 |
+
Returns:
|
| 664 |
+
features: [B, D, T']
|
| 665 |
+
codes: [B, T'] (squeezed if single quantizer)
|
| 666 |
+
"""
|
| 667 |
+
if wav.dim() == 2:
|
| 668 |
+
if wav.size(0) == 1:
|
| 669 |
+
wav = wav.unsqueeze(0) # [1, T] -> [1, 1, T]
|
| 670 |
+
else:
|
| 671 |
+
wav = wav.unsqueeze(1) # [B, T] -> [B, 1, T]
|
| 672 |
+
|
| 673 |
+
z = self.encoder(wav)
|
| 674 |
+
z_q, _, codes = self.quantizer(z)
|
| 675 |
+
|
| 676 |
+
# Squeeze for single quantizer
|
| 677 |
+
if codes.size(0) == 1:
|
| 678 |
+
codes = codes.squeeze(0)
|
| 679 |
+
|
| 680 |
+
return z_q, codes
|
| 681 |
+
|
| 682 |
+
def decode(
|
| 683 |
+
self, features: Tensor, bandwidth_id: Tensor = None
|
| 684 |
+
) -> Tensor:
|
| 685 |
+
"""
|
| 686 |
+
Decode features to waveform.
|
| 687 |
+
|
| 688 |
+
Args:
|
| 689 |
+
features: [B, D, T']
|
| 690 |
+
bandwidth_id: Optional bandwidth ID
|
| 691 |
+
|
| 692 |
+
Returns:
|
| 693 |
+
wav: [B, 1, T]
|
| 694 |
+
"""
|
| 695 |
+
x = self.feature_proj(features)
|
| 696 |
+
|
| 697 |
+
if bandwidth_id is not None:
|
| 698 |
+
bw_emb = self.bandwidth_emb(bandwidth_id)
|
| 699 |
+
x = x + bw_emb.unsqueeze(-1)
|
| 700 |
+
|
| 701 |
+
x = self.backbone(x)
|
| 702 |
+
wav = self.head(x)
|
| 703 |
+
|
| 704 |
+
return wav
|
| 705 |
+
|
| 706 |
+
@torch.no_grad()
|
| 707 |
+
def codes_to_features(self, codes: Tensor) -> Tensor:
|
| 708 |
+
"""
|
| 709 |
+
Convert codes to features.
|
| 710 |
+
|
| 711 |
+
Args:
|
| 712 |
+
codes: [N_q, B, T'] or [B, T']
|
| 713 |
+
|
| 714 |
+
Returns:
|
| 715 |
+
features: [B, D, T']
|
| 716 |
+
"""
|
| 717 |
+
return self.quantizer.decode(codes)
|
| 718 |
+
|
| 719 |
+
def forward(
|
| 720 |
+
self,
|
| 721 |
+
wav: Tensor = None,
|
| 722 |
+
codes: Tensor = None,
|
| 723 |
+
bandwidth_id: Tensor = None,
|
| 724 |
+
**kwargs
|
| 725 |
+
) -> Union[BatchEncoding, Tensor]:
|
| 726 |
+
"""
|
| 727 |
+
Forward pass.
|
| 728 |
+
|
| 729 |
+
If wav provided: encode to get tokens
|
| 730 |
+
If codes provided: decode to get wav
|
| 731 |
+
"""
|
| 732 |
+
if wav is not None:
|
| 733 |
+
features, codes = self.encode_infer(wav, bandwidth_id)
|
| 734 |
+
return BatchEncoding({
|
| 735 |
+
"input_values": features,
|
| 736 |
+
"input_ids": codes,
|
| 737 |
+
})
|
| 738 |
+
elif codes is not None:
|
| 739 |
+
features = self.codes_to_features(codes)
|
| 740 |
+
return self.decode(features, bandwidth_id)
|
| 741 |
+
else:
|
| 742 |
+
raise ValueError("Provide either 'wav' or 'codes'")
|
| 743 |
+
|
| 744 |
+
@classmethod
|
| 745 |
+
def from_pretrained0802(
|
| 746 |
+
cls,
|
| 747 |
+
config_path: str,
|
| 748 |
+
checkpoint_path: str,
|
| 749 |
+
device: str = "cpu",
|
| 750 |
+
) -> "WavTokenizer":
|
| 751 |
+
"""
|
| 752 |
+
Load from original WavTokenizer checkpoint.
|
| 753 |
+
|
| 754 |
+
Args:
|
| 755 |
+
config_path: Path to YAML config
|
| 756 |
+
checkpoint_path: Path to .ckpt file
|
| 757 |
+
device: Device to load to
|
| 758 |
+
|
| 759 |
+
Returns:
|
| 760 |
+
Loaded model
|
| 761 |
+
"""
|
| 762 |
+
import yaml
|
| 763 |
+
|
| 764 |
+
# Load YAML config
|
| 765 |
+
with open(config_path, 'r') as f:
|
| 766 |
+
yaml_cfg = yaml.safe_load(f)
|
| 767 |
+
|
| 768 |
+
# Extract config params
|
| 769 |
+
model_args = yaml_cfg.get('model', {}).get('init_args', {})
|
| 770 |
+
|
| 771 |
+
# Create HF config
|
| 772 |
+
config = WavTokenizerConfig(
|
| 773 |
+
sample_rate=24000,
|
| 774 |
+
n_fft=model_args.get('head', {}).get('init_args', {}).get('n_fft', 1280),
|
| 775 |
+
hop_length=model_args.get('head', {}).get('init_args', {}).get('hop_length', 320),
|
| 776 |
+
feature_dim=model_args.get('backbone', {}).get('init_args', {}).get('dim', 512),
|
| 777 |
+
latent_dim=model_args.get('backbone', {}).get('init_args', {}).get('input_channels', 512),
|
| 778 |
+
backbone_dim=model_args.get('backbone', {}).get('init_args', {}).get('dim', 512),
|
| 779 |
+
backbone_intermediate_dim=model_args.get('backbone', {}).get('init_args', {}).get('intermediate_dim', 1536),
|
| 780 |
+
backbone_num_blocks=model_args.get('backbone', {}).get('init_args', {}).get('num_layers', 8),
|
| 781 |
+
codebook_size=model_args.get('quantizer', {}).get('init_args', {}).get('codebook_size', 4096),
|
| 782 |
+
codebook_dim=model_args.get('quantizer', {}).get('init_args', {}).get('codebook_dim', 8),
|
| 783 |
+
num_quantizers=model_args.get('quantizer', {}).get('init_args', {}).get('num_quantizers', 1),
|
| 784 |
+
use_attention=True,
|
| 785 |
+
attention_dim=model_args.get('backbone', {}).get('init_args', {}).get('dim', 512),
|
| 786 |
+
attention_heads=8,
|
| 787 |
+
attention_layers=1,
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
# Create model
|
| 791 |
+
model = cls(config)
|
| 792 |
+
|
| 793 |
+
# Load checkpoint
|
| 794 |
+
ckpt = torch.load(checkpoint_path, map_location=device)
|
| 795 |
+
state_dict = ckpt.get('state_dict', ckpt)
|
| 796 |
+
|
| 797 |
+
# Clean state dict
|
| 798 |
+
new_state_dict = {}
|
| 799 |
+
for k, v in state_dict.items():
|
| 800 |
+
# Remove 'model.' prefix if present
|
| 801 |
+
if k.startswith('model.'):
|
| 802 |
+
k = k[6:]
|
| 803 |
+
new_state_dict[k] = v
|
| 804 |
+
|
| 805 |
+
# Load (non-strict to handle mismatches)
|
| 806 |
+
missing, unexpected = model.load_state_dict(new_state_dict, strict=False)
|
| 807 |
+
|
| 808 |
+
if missing:
|
| 809 |
+
print(f"Missing keys: {len(missing)}")
|
| 810 |
+
if unexpected:
|
| 811 |
+
print(f"Unexpected keys: {len(unexpected)}")
|
| 812 |
+
|
| 813 |
+
return model.to(device)
|