Create convert_wavtokenizer.py
Browse files- convert_wavtokenizer.py +173 -0
convert_wavtokenizer.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
Convert original WavTokenizer checkpoint to HuggingFace format.
|
| 4 |
+
|
| 5 |
+
Usage:
|
| 6 |
+
python convert_wavtokenizer.py \
|
| 7 |
+
--config_path configs/wavtokenizer_smalldata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml \
|
| 8 |
+
--checkpoint_path checkpoints/wavtokenizer_small_320_24k_4096.ckpt \
|
| 9 |
+
--output_dir ./wavtokenizer_hf_converted
|
| 10 |
+
|
| 11 |
+
This will create a HuggingFace-compatible model directory that can be loaded with:
|
| 12 |
+
model = AutoModel.from_pretrained("./wavtokenizer_hf_converted", trust_remote_code=True)
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import json
|
| 17 |
+
import os
|
| 18 |
+
import shutil
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import yaml
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def convert_wavtokenizer(config_path: str, checkpoint_path: str, output_dir: str):
|
| 26 |
+
"""Convert WavTokenizer checkpoint to HuggingFace format."""
|
| 27 |
+
|
| 28 |
+
print(f"Loading config from: {config_path}")
|
| 29 |
+
print(f"Loading checkpoint from: {checkpoint_path}")
|
| 30 |
+
|
| 31 |
+
# Load YAML config
|
| 32 |
+
with open(config_path, 'r') as f:
|
| 33 |
+
yaml_cfg = yaml.safe_load(f)
|
| 34 |
+
|
| 35 |
+
# Extract model parameters
|
| 36 |
+
model_args = yaml_cfg.get('model', {}).get('init_args', {})
|
| 37 |
+
|
| 38 |
+
# Get specific component configs
|
| 39 |
+
head_args = model_args.get('head', {}).get('init_args', {})
|
| 40 |
+
backbone_args = model_args.get('backbone', {}).get('init_args', {})
|
| 41 |
+
quantizer_args = model_args.get('quantizer', {}).get('init_args', {})
|
| 42 |
+
feature_extractor_args = model_args.get('feature_extractor', {}).get('init_args', {})
|
| 43 |
+
|
| 44 |
+
# Create HuggingFace config
|
| 45 |
+
hf_config = {
|
| 46 |
+
"_name_or_path": "WavTokenizerSmall",
|
| 47 |
+
"architectures": ["WavTokenizer"],
|
| 48 |
+
"auto_map": {
|
| 49 |
+
"AutoConfig": "configuration_wavtokenizer.WavTokenizerConfig",
|
| 50 |
+
"AutoModel": "modeling_wavtokenizer.WavTokenizer"
|
| 51 |
+
},
|
| 52 |
+
"model_type": "wavtokenizer",
|
| 53 |
+
|
| 54 |
+
# Audio parameters
|
| 55 |
+
"sample_rate": feature_extractor_args.get('sample_rate', 24000),
|
| 56 |
+
"n_fft": head_args.get('n_fft', 1280),
|
| 57 |
+
"hop_length": head_args.get('hop_length', 320),
|
| 58 |
+
"n_mels": feature_extractor_args.get('n_mels', 128),
|
| 59 |
+
"padding": head_args.get('padding', 'center'),
|
| 60 |
+
|
| 61 |
+
# Feature dimensions
|
| 62 |
+
"feature_dim": backbone_args.get('dim', 512),
|
| 63 |
+
"encoder_dim": 64, # Default DAC encoder
|
| 64 |
+
"encoder_rates": [8, 5, 4, 2], # Default DAC encoder rates
|
| 65 |
+
"latent_dim": backbone_args.get('input_channels', 512),
|
| 66 |
+
|
| 67 |
+
# Quantizer parameters
|
| 68 |
+
"codebook_size": quantizer_args.get('codebook_size', 4096),
|
| 69 |
+
"codebook_dim": quantizer_args.get('codebook_dim', 8),
|
| 70 |
+
"num_quantizers": quantizer_args.get('num_quantizers', 1),
|
| 71 |
+
|
| 72 |
+
# Backbone parameters
|
| 73 |
+
"backbone_type": "vocos",
|
| 74 |
+
"backbone_dim": backbone_args.get('dim', 512),
|
| 75 |
+
"backbone_num_blocks": backbone_args.get('num_layers', 8),
|
| 76 |
+
"backbone_intermediate_dim": backbone_args.get('intermediate_dim', 1536),
|
| 77 |
+
"backbone_kernel_size": 7,
|
| 78 |
+
"backbone_layer_scale_init_value": 1e-6,
|
| 79 |
+
|
| 80 |
+
# Head parameters
|
| 81 |
+
"head_type": "istft",
|
| 82 |
+
"head_dim": head_args.get('n_fft', 1280) // 2 + 1,
|
| 83 |
+
|
| 84 |
+
# Attention parameters
|
| 85 |
+
"use_attention": True,
|
| 86 |
+
"attention_dim": backbone_args.get('dim', 512),
|
| 87 |
+
"attention_heads": 8,
|
| 88 |
+
"attention_layers": 1,
|
| 89 |
+
|
| 90 |
+
"torch_dtype": "float32",
|
| 91 |
+
"transformers_version": "4.40.0"
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
# Create output directory
|
| 95 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 96 |
+
|
| 97 |
+
# Save config.json
|
| 98 |
+
config_out_path = os.path.join(output_dir, "config.json")
|
| 99 |
+
with open(config_out_path, 'w') as f:
|
| 100 |
+
json.dump(hf_config, f, indent=2)
|
| 101 |
+
print(f"Saved config to: {config_out_path}")
|
| 102 |
+
|
| 103 |
+
# Load checkpoint
|
| 104 |
+
print("Loading checkpoint...")
|
| 105 |
+
ckpt = torch.load(checkpoint_path, map_location='cpu')
|
| 106 |
+
state_dict = ckpt.get('state_dict', ckpt)
|
| 107 |
+
|
| 108 |
+
# Clean state dict keys
|
| 109 |
+
new_state_dict = {}
|
| 110 |
+
for k, v in state_dict.items():
|
| 111 |
+
# Remove 'model.' prefix if present
|
| 112 |
+
if k.startswith('model.'):
|
| 113 |
+
k = k[6:]
|
| 114 |
+
new_state_dict[k] = v
|
| 115 |
+
|
| 116 |
+
# Save as pytorch_model.bin
|
| 117 |
+
model_out_path = os.path.join(output_dir, "pytorch_model.bin")
|
| 118 |
+
torch.save(new_state_dict, model_out_path)
|
| 119 |
+
print(f"Saved model weights to: {model_out_path}")
|
| 120 |
+
|
| 121 |
+
# Copy Python files
|
| 122 |
+
script_dir = Path(__file__).parent
|
| 123 |
+
|
| 124 |
+
# Copy configuration file
|
| 125 |
+
config_py = script_dir / "configuration_wavtokenizer.py"
|
| 126 |
+
if config_py.exists():
|
| 127 |
+
shutil.copy(config_py, output_dir)
|
| 128 |
+
print(f"Copied: configuration_wavtokenizer.py")
|
| 129 |
+
|
| 130 |
+
# Copy modeling file
|
| 131 |
+
modeling_py = script_dir / "modeling_wavtokenizer.py"
|
| 132 |
+
if modeling_py.exists():
|
| 133 |
+
shutil.copy(modeling_py, output_dir)
|
| 134 |
+
print(f"Copied: modeling_wavtokenizer.py")
|
| 135 |
+
|
| 136 |
+
# Copy README
|
| 137 |
+
readme = script_dir / "README.md"
|
| 138 |
+
if readme.exists():
|
| 139 |
+
shutil.copy(readme, output_dir)
|
| 140 |
+
print(f"Copied: README.md")
|
| 141 |
+
|
| 142 |
+
print(f"\nConversion complete! Model saved to: {output_dir}")
|
| 143 |
+
print("\nTo load the model:")
|
| 144 |
+
print(f' model = AutoModel.from_pretrained("{output_dir}", trust_remote_code=True)')
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def main():
|
| 148 |
+
parser = argparse.ArgumentParser(description="Convert WavTokenizer checkpoint to HuggingFace format")
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--config_path",
|
| 151 |
+
type=str,
|
| 152 |
+
required=True,
|
| 153 |
+
help="Path to WavTokenizer YAML config file"
|
| 154 |
+
)
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--checkpoint_path",
|
| 157 |
+
type=str,
|
| 158 |
+
required=True,
|
| 159 |
+
help="Path to WavTokenizer .ckpt checkpoint file"
|
| 160 |
+
)
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--output_dir",
|
| 163 |
+
type=str,
|
| 164 |
+
default="./wavtokenizer_hf_converted",
|
| 165 |
+
help="Output directory for HuggingFace model"
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
args = parser.parse_args()
|
| 169 |
+
convert_wavtokenizer(args.config_path, args.checkpoint_path, args.output_dir)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
main()
|