--- language: en license: mit datasets: [Cats-Dogs] metrics: [accuracy, f1, precision, recall] --- # 🐱🐶 Transfer Learning on AlexNet for Cats vs. Dogs Classification This model fine-tunes **AlexNet** using Transfer Learning to classify images into two categories: **Cats** and **Dogs**. ## **📝 Model Details** - **Pre-trained Model:** AlexNet - **Dataset Used:** Cats-Dogs - **Batch Size:** 8 - **Learning Rate:** 0.001 - **Epochs:** 5 --- ## **📌 Baseline Performance (Before Transfer Learning)** **Validation Accuracy:** **40.66%** - **Precision:** 0.3983 - **Recall:** 0.4066 - **F1-score:** 0.3942 - Confusion Matrix: [[659 1841] [1126 1374]] --- ## **✅ Performance After Training** **Training Accuracy:** **92.40%** - **Precision:** 0.9250 - **Recall:** 0.9240 - **F1-score:** 0.9240 **Confusion Matrix:** [[9486 514] [1006 8994]] **Validation Accuracy:** **94.10%** - **Precision:** 0.9425 - **Recall:** 0.9410 - **F1-score:** 0.9410 **Confusion Matrix:** [[2425 75] [ 220 2280]] --- You can download the model from [Hugging Face](https://huggingface.co/Wolverine001/Alexnet-TransferLearning).