File size: 15,763 Bytes
cd56396
 
 
 
823a94c
 
cd56396
 
 
 
 
 
 
 
 
 
 
6e2cdca
cd56396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
---
license: apache-2.0
frameworks:
- pytorch
tags:
- medical
tasks:
- image-text-to-text
---

<div style="display: flex; align-items: center; justify-content: center;">
  <h1 style="margin: 0; text-align: left;">
    Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding
  </h1>
</div>
<div align="center">

[![Paper](https://img.shields.io/badge/Paper-arXiv-red)](https://arxiv.org/abs/2510.08668)
[![HuggingFace](https://img.shields.io/badge/๐Ÿค—%20Hugging%20Face-Models-yellow)](https://huggingface.co/ZJU-AI4H/Hulu-Med)
[![ModelScope](https://img.shields.io/badge/ModelScope-Models-blue)](https://modelscope.cn/models/Med-Team/Hulu-Med)
[![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE)

[๐Ÿ“„ Paper](http://arxiv.org/abs/2510.08668) | [๐Ÿค— Hulu-Med-7B](https://huggingface.co/ZJU-AI4H/Hulu-Med-7B) |[๐Ÿค— Hulu-Med-14B](https://huggingface.co/ZJU-AI4H/Hulu-Med-14B) |[๐Ÿค— Hulu-Med-32B](https://huggingface.co/ZJU-AI4H/Hulu-Med-32B) | [๐Ÿ”ฎ ModelScope Models](https://modelscope.cn/models/Med-Team/Hulu-Med) | [๐Ÿ“Š Demo](#demo)

</div>

## ๐Ÿ”ฅ News

- **[2025-10-08]** Hulu-Med models and inference code released!

## ๐Ÿ“– Overview

**Hulu-Med** is a transparent medical vision-language model that unifies understanding across diverse modalities including **medical text, 2D/3D images, and videos**. Built with a focus on transparency and accessibility, Hulu-Med achieves state-of-the-art performance on 30 medical benchmarks while being trained entirely on public data.


### Key Features

- ๐ŸŒŸ **Holistic Multimodal Understanding**: Seamlessly processes medical text, 2D images, 3D volumes, and surgical videos
- ๐Ÿ”“ **Fully Transparent**: Complete open-source pipeline including data curation, training code, and model weights
- ๐Ÿ“Š **State-of-the-Art Performance**: Outperforms leading open-source models and competes with proprietary systems
- โšก **Efficient Training**: Only 4,000-40,000 GPU hours required for 7B-32B variants
- ๐Ÿ—‚๏ธ **Comprehensive Coverage**: Trained on 16.7M samples spanning 12 anatomical systems and 14 imaging modalities

### Comprehensive Data Coverage

Our training corpus encompasses:

- **12 Major Anatomical Systems**: Multi-System, Skin/Integumentary, Respiratory, Cellular/Tissue Level, Digestive, Nervous, Cardiovascular, Musculoskeletal, Reproductive, Urinary, Whole Body, Endocrine, Immune/Lymphatic, and Hematologic systems
- **14 Medical Imaging Modalities**: CT, MRI, X-Ray, Ultrasound, PET, OCT, Endoscopy, Microscopy, Histopathology, Fundus, Dermoscopy, Angiography, Digital Photograph, and Medical Chart
- **Diverse Downstream Tasks**: Medical Dialogue, Anomaly Detection, Prognosis Prediction, Treatment Planning, Surgical Skill Assessment, Education, Medical Report Generation, Surgical Phase Recognition, Medical Computation, and more

## ๐Ÿ† Performance Highlights

### Medical Multimodal Benchmarks

Performance comparison on medical multimodal benchmarks (For the 'Medical VLM < 10B' subgroup, **bold** indicates the best method):

| Models | OM.VQA | PMC-VQA | VQA-RAD | SLAKE | PathVQA | MedXQA | MMMU-Med |
|--------|--------|---------|---------|-------|---------|--------|----------|
| **Proprietary Models** |
| GPT-4.1 | 75.5 | 55.2 | 65.0 | 72.2 | 55.5 | 45.2 | 75.2 |
| GPT-4o | 67.5 | 49.7 | 61.0 | 71.2 | 55.5 | 44.3 | 62.8 |
| Claude Sonnet 4 | 65.5 | 54.4 | 67.6 | 70.6 | 54.2 | 43.3 | 74.6 |
| Gemini-2.5-Flash | 71.0 | 55.4 | 68.5 | 75.8 | 55.4 | 52.8 | 76.9 |
| **General VLMs (< 10B)** |
| Qwen2.5VL-7B | 63.6 | 51.9 | 63.2 | 66.8 | 44.1 | 20.1 | 50.6 |
| InternVL2.5-8B | 81.3 | 51.3 | 59.4 | 69.0 | 42.1 | 21.7 | 53.5 |
| InternVL3-8B | 79.1 | 53.8 | 65.4 | 72.8 | 48.6 | 22.4 | 59.2 |
| **General VLMs (> 10B)** |
| InternVL3-14B | 78.9 | 54.1 | 66.3 | 72.8 | 48.0 | 23.1 | 63.1 |
| Qwen2.5V-32B | 68.2 | 54.5 | 71.8 | 71.2 | 41.9 | 25.2 | 59.6 |
| InternVL3-38B | 79.8 | 56.6 | 65.4 | 72.7 | 51.0 | 25.2 | 65.2 |
| **Medical VLMs (< 10B)** |
| LLaVA-Med-7B | 34.8 | 22.7 | 46.6 | 51.9 | 35.2 | 20.8 | 28.1 |
| MedGemma-4B | 70.7 | 49.2 | 72.3 | 78.2 | 48.1 | 25.4 | 43.2 |
| HuatuoGPT-V-7B | 74.3 | 53.1 | 67.6 | 68.1 | 44.8 | 23.2 | 49.8 |
| Lingshu-7B | 82.9 | 56.3 | 67.9 | 83.1 | 61.9 | 26.7 | - |
| **Hulu-Med-7B** | **84.2** | **66.8** | **78.0** | **86.8** | **65.6** | **29.0** | **51.4** |
| **Medical VLMs (> 10B)** |
| HealthGPT-14B | 75.2 | 56.4 | 65.0 | 66.1 | 56.7 | 24.7 | 49.6 |
| HuatuoGPT-V-34B | 74.0 | 56.6 | 61.4 | 69.5 | 44.4 | 22.1 | 51.8 |
| Lingshu-32B | 83.4 | 57.9 | 76.7 | 86.7 | 65.5 | 30.9 | - |
| **Hulu-Med-14B** | **85.1** | **68.9** | **76.1** | **86.5** | **64.4** | **30.0** | **54.8** |
| **Hulu-Med-32B** | **84.6** | **69.4** | **81.4** | **85.7** | **67.3** | **34.0** | **60.4** |

### Medical Text Benchmarks

Performance comparison on medical text benchmarks (**bold** indicates the best method in each subgroup):

| Models | MMLU-Pro | MedXQA | Medbullets | SGPQA | PubMedQA | MedMCQA | MedQA | MMLU-Med |
|--------|----------|--------|------------|-------|----------|---------|-------|----------|
| **Proprietary Models** |
| GPT-4.1 | 78.0 | 30.9 | 77.0 | 49.9 | 75.6 | 77.7 | 89.1 | 89.6 |
| o3-mini | 78.1 | 35.4 | 83.7 | 50.1 | 73.6 | 60.6 | 74.5 | 87.0 |
| Claude Sonnet 4 | 79.5 | 33.6 | 80.2 | 56.3 | 78.6 | 79.3 | 92.1 | 91.3 |
| Gemini-2.5-Flash | 70.0 | 35.6 | 77.6 | 53.3 | 73.8 | 73.6 | 91.2 | 84.2 |
| **General VLMs (< 10B)** |
| Qwen2.5VL-7B | 50.5 | 12.8 | 42.1 | 26.3 | 76.4 | 52.6 | 57.3 | 73.4 |
| InternVL2.5-8B | 50.6 | 11.6 | 42.4 | 26.1 | 76.4 | 52.4 | 53.7 | 74.2 |
| InternVL3-8B | 57.9 | 13.1 | 48.5 | 31.2 | 75.4 | 57.7 | 62.1 | 77.5 |
| **General VLMs (> 10B)** |
| Qwen2.5VL-32B | 66.5 | 15.6 | 54.2 | 37.6 | 68.4 | 63.0 | 71.6 | 83.2 |
| InternVL3-14B | 65.4 | 14.1 | 49.5 | 37.9 | 77.2 | 62.0 | 70.1 | 81.7 |
| InternVL3-38B | 72.1 | 16.0 | 54.6 | 42.5 | 73.2 | 64.9 | 73.5 | 83.8 |
| **Medical VLMs (< 10B)** |
| LLaVA-Med-7B | 16.6 | 9.9 | 34.4 | 16.1 | 26.4 | 39.4 | 42.0 | 50.6 |
| MedGemma-4B | 38.6 | 12.8 | 45.6 | 21.6 | 72.2 | 52.2 | 56.2 | 66.7 |
| HuatuoGPT-V-7B | 44.6 | 10.1 | 40.9 | 21.9 | 72.8 | 51.2 | 52.9 | 69.3 |
| Lingshu-7B | 50.4 | 16.5 | 56.2 | 26.3 | 76.6 | 55.9 | 63.3 | 74.5 |
| **Hulu-Med-7B** | **60.6** | **19.6** | **61.5** | **31.1** | **77.4** | **67.6** | **73.5** | **79.5** |
| **Medical VLMs (> 10B)** |
| HealthGPT-14B | 63.4 | 11.3 | 39.8 | 25.7 | 68.0 | 63.4 | 66.2 | 80.2 |
| Lingshu-32B | 70.2 | 22.7 | 65.4 | 41.1 | 77.8 | 66.1 | 74.7 | 84.7 |
| HuatuoGPT-V-34B | 51.8 | 11.4 | 42.7 | 26.5 | 72.2 | 54.7 | 58.8 | 74.7 |
| **Hulu-Med-14B** | **68.0** | **23.2** | **68.5** | **37.7** | **79.8** | **70.4** | **78.1** | **83.3** |
| **Hulu-Med-32B** | **72.9** | **24.2** | **68.8** | **41.8** | **80.8** | **72.8** | **80.4** | **85.6** |

## ๐Ÿš€ Model Zoo

We provide three model variants with different parameter scales:

| Model | Parameters | LLM Base | Training Cost | HuggingFace | ModelScope |
|-------|-----------|----------|---------------|-------------|------------|
| **Hulu-Med-7B** | 7B | Qwen2.5-7B | ~4,000 GPU hours | [๐Ÿค— Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-7B) | [๐Ÿ”ฎ Link](https://modelscope.cn/models/Med-Team/Hulu-Med-7B) |
| **Hulu-Med-14B** | 14B | Qwen3-14B | ~8,000 GPU hours | [๐Ÿค— Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-14B) | [๐Ÿ”ฎ Link](https://modelscope.cn/models/Med-Team/Hulu-Med-14B) |
| **Hulu-Med-32B** | 32B | Qwen2.5-32B | ~40,000 GPU hours | [๐Ÿค— Link](https://huggingface.co/ZJU-AI4H/Hulu-Med-32B) | [๐Ÿ”ฎ Link](https://modelscope.cn/models/Med-Team/Hulu-Med-32B) |

## ๐Ÿ› ๏ธ Installation
```bash
# Clone the repository
git clone https://github.com/your-org/Hulu-Med.git
cd Hulu-Med
# Create conda environment
conda create -n hulumed python=3.10
conda activate hulumed
# PyTorch and torchvision for CUDA 11.8
pip install torch==2.4.0 torchvision==0.19.0 --extra-index-url https://download.pytorch.org/whl/cu118
# Flash-attn pinned to a compatible version
pip install flash-attn==2.7.3 --no-build-isolation --upgrade
# Transformers and accelerate
pip install transformers==4.51.2 accelerate==1.7.0
# Video processing dependencies
pip install decord ffmpeg-python imageio opencv-python
# Install other dependencies
pip install -r requirements.txt
```

## ๐Ÿ’ป Quick Start

### 2D Example
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
from hulumed import disable_torch_init, model_init, mm_infer
from hulumed import disable_torch_init, model_init, mm_infer
from hulumed.model import load_pretrained_model
from hulumed.mm_utils import load_images, process_images, load_video, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria
from hulumed.model.processor import HulumedProcessor
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
model_path = "xxxxxx"
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name,device_map='cuda:0')
processor = HulumedProcessor(image_processor, tokenizer)
slices = load_images(
    "./demo/demo.jpg", 
)
conversation = [
        {
            "role": "user",
            "content": [
               {"type": "image"},
                {"type": "text", "text": "Describe this image in detail."},
            ]
        }
    ]
modal='image'
model=model.to("cuda:0")
inputs = processor(
        images=[slices] if modal != "text" else None,
        text=conversation,
        merge_size=2 if modal == "video" else 1,
        return_tensors="pt"
        )
inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
    inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
with torch.inference_mode():
        output_ids = model.generate(
            **inputs,
            do_sample=True,
            modals=[modal],
            temperature=0.6,
            max_new_tokens=8192,
            use_cache=True,
            pad_token_id=tokenizer.eos_token_id,
        )
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
```
### 3D Example
```
slices = load_images(
    "./src/demo/amos_0013.nii", ##Support nii 3D input
    nii_num_slices=160      
)
conversation = [
        {
            "role": "user",
            "content": [
               {"type": "video", "num_frames": len(slices)},
                {"type": "text", "text": "This is a medical 3D scenario. Please generate a medical report for the given 3D medical images, including both findings and impressions."},
            ]
        }
    ]
modal='video'
model=model.to("cuda:0")
inputs = processor(
        images=[slices] if modal != "text" else None,
        text=conversation,
        merge_size=2 if modal == "video" else 1,
        return_tensors="pt"
        )
inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
    inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
with torch.inference_mode():
        output_ids = model.generate(
            **inputs,
            do_sample=True,
            modals=[modal],
            temperature=0.6,
            max_new_tokens=8192,
            use_cache=True,
            pad_token_id=tokenizer.eos_token_id,
        )
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
```
### Video Example
```
frames, timestamps = load_video("./src/demo/1min_demo.mp4", fps=1, max_frames=3000)
conversation = [
        {
            "role": "user",
            "content": [
               {"type": "video", "num_frames": len(frames)},
                {"type": "text", "text": "Please describe this video in detail."},
            ]
        }
    ]
modal='video'
model=model.to("cuda:0")
inputs = processor(
        images=[frames] if modal != "text" else None,
        text=conversation,
        merge_size=2 if modal == "video" else 1,
        return_tensors="pt"
        )
inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
    inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
with torch.inference_mode():
        output_ids = model.generate(
            **inputs,
            do_sample=True,
            modals=[modal],
            temperature=0.6,
            max_new_tokens=8192,
            use_cache=True,
            pad_token_id=tokenizer.eos_token_id,
        )
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
```
### Text Example
```
conversation = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "Hello, I have a headache, what should I do?"},
            ]
        }
    ]
modal='text'
model=model.to("cuda:0")
inputs = processor(
        text=conversation,
        merge_size=2 if modal == "video" else 1,
        return_tensors="pt"
        )
inputs = {k: v.cuda().to('cuda:0') if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
    inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
with torch.inference_mode():
        output_ids = model.generate(
            **inputs,
            do_sample=True,
            modals=[modal],
            temperature=0.6,
            max_new_tokens=8192,
            use_cache=True,
            pad_token_id=tokenizer.eos_token_id,
        )
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
```


## ๐Ÿ“Š Training

### Data Preparation

Our training data consists of 16.7M samples across four categories:

- **Medical Multimodal Data** (9M samples): Covering 14 imaging modalities
- **Medical Text Data** (4.9M samples): Clinical notes, literature, QA pairs
- **General Multimodal Data** (1.3M samples): Enhancing generalization
- **General Text Data** (1.5M samples): Improving reasoning capabilities

Download and prepare the data:
Comming soon

## ๐Ÿ—๏ธ Model Architecture

Hulu-Med consists of four core components:

1. **Vision Encoder**: SigLIP-based encoder with 2D RoPE for unified 2D/3D/video processing
2. **Multimodal Projector**: Projects visual tokens into language model space
3. **LLM Decoder**: Qwen-based decoder for generating responses
4. **Medical-Aware Token Reduction**: Efficient processing with ~55% token reduction

## ๐Ÿ“‹ Supported Tasks

- โœ… Visual Question Answering (2D/3D/Video)
- โœ… Medical Report Generation
- โœ… Disease Diagnosis
- โœ… Anatomical Understanding
- โœ… Surgical Phase Recognition
- โœ… Clinical Dialogue
- โœ… Medical Text Reasoning
- โœ… Multilingual Medical QA
- โœ… Rare Disease Diagnosis
- More 

## ๐Ÿ“„ Citation

If you find Hulu-Med useful in your research, please cite:
```bibtex
@misc{jiang2025hulumedtransparentgeneralistmodel,
      title={Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding}, 
      author={Songtao Jiang and Yuan Wang and Sibo Song and Tianxiang Hu and Chenyi Zhou and Bin Pu and Yan Zhang and Zhibo Yang and Yang Feng and Joey Tianyi Zhou and Jin Hao and Zijian Chen and Ruijia Wu and Tao Tang and Junhui Lv and Hongxia Xu and Hongwei Wang and Jun Xiao and Bin Feng and Fudong Zhu and Kenli Li and Weidi Xie and Jimeng Sun and Jian Wu and Zuozhu Liu},
      year={2025},
      eprint={2510.08668},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2510.08668}, 
}
```


## ๐Ÿ“œ License

This project is released under the [Apache 2.0 License](LICENSE).

---

<div align="center">
Made with โค๏ธ by the ZJU AI4H Team
</div>