Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from transformers import AutoModel, AutoConfig
|
| 5 |
+
|
| 6 |
+
class EnhancedMoE(nn.Module):
|
| 7 |
+
def __init__(self, input_dim, num_experts=12, expert_dim=1024, dropout_rate=0.1):
|
| 8 |
+
super(EnhancedMoE, self).__init__()
|
| 9 |
+
self.num_experts = num_experts
|
| 10 |
+
# More sophisticated experts with two layers
|
| 11 |
+
self.experts = nn.ModuleList([
|
| 12 |
+
nn.Sequential(
|
| 13 |
+
nn.Linear(input_dim, expert_dim),
|
| 14 |
+
nn.ReLU(),
|
| 15 |
+
nn.Dropout(dropout_rate),
|
| 16 |
+
nn.Linear(expert_dim, expert_dim)
|
| 17 |
+
) for _ in range(num_experts)
|
| 18 |
+
])
|
| 19 |
+
# Improved gating with attention-like mechanism
|
| 20 |
+
self.gating_network = nn.Sequential(
|
| 21 |
+
nn.Linear(input_dim, expert_dim),
|
| 22 |
+
nn.ReLU(),
|
| 23 |
+
nn.Linear(expert_dim, num_experts)
|
| 24 |
+
)
|
| 25 |
+
self.layer_norm = nn.LayerNorm(expert_dim)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
gating_scores = F.softmax(self.gating_network(x), dim=-1)
|
| 29 |
+
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
|
| 30 |
+
output = torch.sum(gating_scores.unsqueeze(-1) * expert_outputs, dim=1)
|
| 31 |
+
return self.layer_norm(output)
|
| 32 |
+
|
| 33 |
+
class UltraSmarterModel(nn.Module):
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
text_model_name="bert-base-uncased",
|
| 37 |
+
image_dim=2048,
|
| 38 |
+
audio_dim=512,
|
| 39 |
+
num_classes=None,
|
| 40 |
+
hidden_dim=1024
|
| 41 |
+
):
|
| 42 |
+
super(UltraSmarterModel, self).__init__()
|
| 43 |
+
|
| 44 |
+
# Text processing
|
| 45 |
+
self.text_config = AutoConfig.from_pretrained(text_model_name)
|
| 46 |
+
self.text_encoder = AutoModel.from_pretrained(text_model_name)
|
| 47 |
+
|
| 48 |
+
# Enhanced modality experts
|
| 49 |
+
self.image_expert = EnhancedMoE(image_dim, expert_dim=hidden_dim)
|
| 50 |
+
self.audio_expert = EnhancedMoE(audio_dim, expert_dim=hidden_dim)
|
| 51 |
+
|
| 52 |
+
# Cross-attention between modalities
|
| 53 |
+
self.cross_attention = nn.MultiheadAttention(
|
| 54 |
+
embed_dim=hidden_dim,
|
| 55 |
+
num_heads=8,
|
| 56 |
+
batch_first=True
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Fusion and output
|
| 60 |
+
fused_dim = hidden_dim * 3 # Text + Image + Audio
|
| 61 |
+
self.fusion_layer = nn.Sequential(
|
| 62 |
+
nn.Linear(fused_dim, hidden_dim),
|
| 63 |
+
nn.ReLU(),
|
| 64 |
+
nn.Dropout(0.1)
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Flexible output layer (classification or regression)
|
| 68 |
+
self.output_dim = num_classes if num_classes else hidden_dim
|
| 69 |
+
self.output_layer = nn.Linear(hidden_dim, self.output_dim)
|
| 70 |
+
|
| 71 |
+
# Additional improvements
|
| 72 |
+
self.layer_norm = nn.LayerNorm(hidden_dim)
|
| 73 |
+
self.dropout = nn.Dropout(0.1)
|
| 74 |
+
|
| 75 |
+
def forward(self, text_input, image_input, audio_input):
|
| 76 |
+
# Text features from CLS token
|
| 77 |
+
text_features = self.text_encoder(**text_input).last_hidden_state[:, 0, :]
|
| 78 |
+
text_features = self.dropout(F.relu(text_features))
|
| 79 |
+
|
| 80 |
+
# Process image and audio through enhanced MoE
|
| 81 |
+
image_features = self.image_expert(image_input)
|
| 82 |
+
audio_features = self.audio_expert(audio_input)
|
| 83 |
+
|
| 84 |
+
# Reshape for cross-attention (batch_size, seq_len=1, embed_dim)
|
| 85 |
+
text_features = text_features.unsqueeze(1)
|
| 86 |
+
image_features = image_features.unsqueeze(1)
|
| 87 |
+
audio_features = audio_features.unsqueeze(1)
|
| 88 |
+
|
| 89 |
+
# Cross-attention between modalities
|
| 90 |
+
modality_features = torch.cat([text_features, image_features, audio_features], dim=1)
|
| 91 |
+
attn_output, _ = self.cross_attention(
|
| 92 |
+
modality_features, modality_features, modality_features
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Fuse features
|
| 96 |
+
fused_features = attn_output.reshape(attn_output.size(0), -1)
|
| 97 |
+
fused_features = self.fusion_layer(fused_features)
|
| 98 |
+
fused_features = self.layer_norm(fused_features)
|
| 99 |
+
|
| 100 |
+
# Final output
|
| 101 |
+
output = self.output_layer(fused_features)
|
| 102 |
+
|
| 103 |
+
# Apply softmax/sigmoid if classification
|
| 104 |
+
if self.output_dim > 1:
|
| 105 |
+
return F.softmax(output, dim=-1)
|
| 106 |
+
return output
|
| 107 |
+
|
| 108 |
+
# Example usage
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
# Sample inputs
|
| 111 |
+
batch_size = 4
|
| 112 |
+
model = UltraSmarterModel(num_classes=10) # For 10-class classification
|
| 113 |
+
|
| 114 |
+
text_input = {
|
| 115 |
+
"input_ids": torch.randint(0, 1000, (batch_size, 128)),
|
| 116 |
+
"attention_mask": torch.ones(batch_size, 128)
|
| 117 |
+
}
|
| 118 |
+
image_input = torch.randn(batch_size, 2048)
|
| 119 |
+
audio_input = torch.randn(batch_size, 512)
|
| 120 |
+
|
| 121 |
+
# Forward pass
|
| 122 |
+
output = model(text_input, image_input, audio_input)
|
| 123 |
+
print(f"Output shape: {output.shape}") # Should be [batch_size, 10]
|