Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Model and tokenizer setup
|
| 7 |
+
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Real Mixtral model
|
| 8 |
+
OUTPUT_DIR = "./mixtral_finetuned"
|
| 9 |
+
|
| 10 |
+
# Load tokenizer
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 12 |
+
tokenizer.pad_token = tokenizer.eos_token # Set pad token if missing
|
| 13 |
+
|
| 14 |
+
# Load model with memory optimizations
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
MODEL_NAME,
|
| 17 |
+
torch_dtype=torch.bfloat16, # Efficient precision
|
| 18 |
+
device_map="auto", # Auto-distribute across GPU/CPU
|
| 19 |
+
low_cpu_mem_usage=True # Minimize RAM usage
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load dataset (local or predefined)
|
| 23 |
+
# Example: local text files; replace with your paths
|
| 24 |
+
dataset = load_dataset("text", data_files={"train": "train.txt", "validation": "val.txt"})
|
| 25 |
+
# Or use a Hugging Face dataset locally: dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
|
| 26 |
+
|
| 27 |
+
# Tokenize dataset
|
| 28 |
+
def tokenize_function(examples):
|
| 29 |
+
tokenized = tokenizer(
|
| 30 |
+
examples["text"],
|
| 31 |
+
padding="max_length",
|
| 32 |
+
truncation=True,
|
| 33 |
+
max_length=512, # Adjustable; matches earlier intent
|
| 34 |
+
return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
tokenized["labels"] = tokenized["input_ids"].clone() # Causal LM needs labels
|
| 37 |
+
return tokenized
|
| 38 |
+
|
| 39 |
+
tokenized_datasets = dataset.map(
|
| 40 |
+
tokenize_function,
|
| 41 |
+
batched=True,
|
| 42 |
+
remove_columns=["text"] # Save memory
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Split dataset
|
| 46 |
+
train_dataset = tokenized_datasets["train"]
|
| 47 |
+
eval_dataset = tokenized_datasets["validation"]
|
| 48 |
+
|
| 49 |
+
# Define training arguments
|
| 50 |
+
training_args = TrainingArguments(
|
| 51 |
+
output_dir=OUTPUT_DIR,
|
| 52 |
+
evaluation_strategy="epoch", # Eval each epoch
|
| 53 |
+
per_device_train_batch_size=2, # Adjust for your GPU
|
| 54 |
+
per_device_eval_batch_size=2,
|
| 55 |
+
num_train_epochs=3, # Default; tweak as needed
|
| 56 |
+
learning_rate=2e-5, # Safe for fine-tuning
|
| 57 |
+
weight_decay=0.01, # Regularization
|
| 58 |
+
gradient_accumulation_steps=4, # Effective batch size = 8
|
| 59 |
+
bf16=True, # Matches bfloat16 dtype
|
| 60 |
+
fp16=False, # Avoid if using bf16
|
| 61 |
+
save_strategy="epoch", # Save each epoch
|
| 62 |
+
save_total_limit=2, # Keep 2 latest checkpoints
|
| 63 |
+
logging_dir="./logs",
|
| 64 |
+
logging_steps=10,
|
| 65 |
+
load_best_model_at_end=True, # Load best based on eval loss
|
| 66 |
+
metric_for_best_model="loss",
|
| 67 |
+
report_to="none" # No external logging
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Initialize Trainer
|
| 71 |
+
trainer = Trainer(
|
| 72 |
+
model=model,
|
| 73 |
+
args=training_args,
|
| 74 |
+
train_dataset=train_dataset,
|
| 75 |
+
eval_dataset=eval_dataset,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Train the model
|
| 79 |
+
trainer.train()
|
| 80 |
+
|
| 81 |
+
# Save locally
|
| 82 |
+
trainer.save_model(OUTPUT_DIR)
|
| 83 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
| 84 |
+
|
| 85 |
+
# Clean up memory
|
| 86 |
+
del model
|
| 87 |
+
torch.cuda.empty_cache()
|
| 88 |
+
print(f"Model and tokenizer saved to {OUTPUT_DIR}")
|