Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- de
|
| 4 |
+
tags:
|
| 5 |
+
- deepset/gbert-large
|
| 6 |
+
---
|
| 7 |
+
**German Sentiment Analysis**
|
| 8 |
+
|
| 9 |
+
This model predicts sentiment for German text.
|
| 10 |
+
|
| 11 |
+
To use this model, first set it up:
|
| 12 |
+
|
| 13 |
+
'''python
|
| 14 |
+
# if necessary:
|
| 15 |
+
# pip install transformers
|
| 16 |
+
from transformers import pipeline
|
| 17 |
+
|
| 18 |
+
sentiment_model = pipeline(model=aari1995/German_Sentiment)
|
| 19 |
+
'''
|
| 20 |
+
|
| 21 |
+
to use it:
|
| 22 |
+
|
| 23 |
+
'''python
|
| 24 |
+
sentence = ["Ich liebe die Bahn. Pünktlich wie immer ... -.-","Meine Beschwerde wurde super abgewickelt"]
|
| 25 |
+
result = sentiment_model(sentence)
|
| 26 |
+
print(result)
|
| 27 |
+
#Output:
|
| 28 |
+
#[{'label': 'negative', 'score': 0.4935680031776428},{'label': 'positive', 'score': 0.4388483762741089}]
|
| 29 |
+
'''
|
| 30 |
+
|
| 31 |
+
Credits / Special Thanks:
|
| 32 |
+
This model was fine-tuned by Aaron Chibb. It is trained on [twitter dataset by tygiangz](https://huggingface.co/datasets/tyqiangz/multilingual-sentiments) and based on gBERT-large by [deepset](https://huggingface.co/deepset/gbert-large).
|