Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
tags:
|
| 5 |
+
- sentiment-analysis
|
| 6 |
+
- product-reviews
|
| 7 |
+
- smartphone-reviews
|
| 8 |
+
- aspect-based-sentiment-analysis
|
| 9 |
+
- distilroberta
|
| 10 |
+
- domain-adaptation
|
| 11 |
+
datasets:
|
| 12 |
+
- amazon-reviews
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
- f1
|
| 16 |
+
widget:
|
| 17 |
+
- text: "Battery life is amazing! Best phone I ever had."
|
| 18 |
+
example_title: "Positive Review"
|
| 19 |
+
- text: "Terrible phone. Broke after one week."
|
| 20 |
+
example_title: "Negative Review"
|
| 21 |
+
- text: "It's okay, nothing special about it."
|
| 22 |
+
example_title: "Neutral Review"
|
| 23 |
+
- text: "Camera quality is excellent but battery drains quickly."
|
| 24 |
+
example_title: "Mixed Sentiment"
|
| 25 |
+
model-index:
|
| 26 |
+
- name: SmartReview DistilRoBERTa Sentiment
|
| 27 |
+
results:
|
| 28 |
+
- task:
|
| 29 |
+
type: text-classification
|
| 30 |
+
name: Sentiment Analysis
|
| 31 |
+
dataset:
|
| 32 |
+
name: Amazon Smartphone Reviews
|
| 33 |
+
type: amazon-reviews
|
| 34 |
+
metrics:
|
| 35 |
+
- type: accuracy
|
| 36 |
+
value: 88.23
|
| 37 |
+
name: Test Accuracy
|
| 38 |
+
- type: f1
|
| 39 |
+
value: 94.88
|
| 40 |
+
name: F1 Score (Positive)
|
| 41 |
+
- type: f1
|
| 42 |
+
value: 85.82
|
| 43 |
+
name: F1 Score (Negative)
|
| 44 |
+
- type: f1
|
| 45 |
+
value: 36.35
|
| 46 |
+
name: F1 Score (Neutral)
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
# SmartReview: DistilRoBERTa for Smartphone Review Sentiment Analysis
|
| 50 |
+
|
| 51 |
+
[](https://huggingface.co/Abhishek86798/smartreview-distilroberta-sentiment)
|
| 52 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 53 |
+
|
| 54 |
+
## Model Description
|
| 55 |
+
|
| 56 |
+
**SmartReview** is a domain-adapted DistilRoBERTa model fine-tuned for sentiment analysis of smartphone and electronics reviews.
|
| 57 |
+
|
| 58 |
+
The model achieves **88.23% accuracy** on 3-class sentiment classification (Positive, Neutral, Negative) and was specifically trained on 67,987 Amazon smartphone reviews.
|
| 59 |
+
|
| 60 |
+
### π― Key Features
|
| 61 |
+
|
| 62 |
+
- β
**Domain-Adapted**: Pretrained on 61,553 smartphone reviews via Masked Language Modeling
|
| 63 |
+
- β
**Efficient**: Only 82M parameters (34% smaller than RoBERTa-base)
|
| 64 |
+
- β
**Accurate**: 88.23% overall accuracy, 94.88% F1 on positive sentiment
|
| 65 |
+
- β
**Fast**: ~50ms inference time per review
|
| 66 |
+
- β
**Specialized**: Understands product review vocabulary and context
|
| 67 |
+
|
| 68 |
+
### ποΈ Architecture
|
| 69 |
+
|
| 70 |
+
- **Base Model**: `distilroberta-base` (82M parameters)
|
| 71 |
+
- **Task**: 3-class sequence classification
|
| 72 |
+
- **Classes**:
|
| 73 |
+
- `LABEL_0`: Positive
|
| 74 |
+
- `LABEL_1`: Neutral
|
| 75 |
+
- `LABEL_2`: Negative
|
| 76 |
+
- **Max Length**: 512 tokens
|
| 77 |
+
|
| 78 |
+
### π Training Approach
|
| 79 |
+
|
| 80 |
+
**Two-Phase Training:**
|
| 81 |
+
|
| 82 |
+
1. **Phase 1 - Domain Adaptation (MLM)**
|
| 83 |
+
- Task: Masked Language Modeling
|
| 84 |
+
- Data: 61,553 smartphone reviews
|
| 85 |
+
- Duration: 66 minutes
|
| 86 |
+
- Result: 99.99% accuracy on domain vocabulary
|
| 87 |
+
|
| 88 |
+
2. **Phase 2 - Sentiment Fine-tuning**
|
| 89 |
+
- Task: 3-class classification
|
| 90 |
+
- Data: 39,044 training samples
|
| 91 |
+
- Duration: 67 minutes
|
| 92 |
+
- Optimizer: AdamW (lr=2e-5, weight_decay=0.01)
|
| 93 |
+
- Hardware: NVIDIA RTX 3050 (4GB)
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
## π Performance
|
| 98 |
+
|
| 99 |
+
### Overall Metrics (Test Set: 8,367 reviews)
|
| 100 |
+
|
| 101 |
+
| Metric | Score |
|
| 102 |
+
|--------|-------|
|
| 103 |
+
| **Accuracy** | **88.23%** |
|
| 104 |
+
| **Precision (Macro)** | 72.38% |
|
| 105 |
+
| **Recall (Macro)** | 72.39% |
|
| 106 |
+
| **F1 (Macro)** | 72.35% |
|
| 107 |
+
| **F1 (Weighted)** | 88.13% |
|
| 108 |
+
|
| 109 |
+
### Per-Class Performance
|
| 110 |
+
|
| 111 |
+
| Class | Precision | Recall | F1-Score | Support |
|
| 112 |
+
|-------|-----------|--------|----------|---------|
|
| 113 |
+
| **Positive** | 95.39% | 94.38% | **94.88%** β
| 5,481 |
|
| 114 |
+
| **Neutral** | 37.79% | 35.02% | **36.35%** β οΈ | 614 |
|
| 115 |
+
| **Negative** | 83.96% | 87.76% | **85.82%** β
| 2,272 |
|
| 116 |
+
|
| 117 |
+
**Note:** Neutral class F1 is lower due to severe class imbalance (only 7.4% of training data). This is expected in product reviews where opinions are rarely truly neutral.
|
| 118 |
+
|
| 119 |
+
### Confusion Matrix
|
| 120 |
+
|
| 121 |
+
```
|
| 122 |
+
PREDICTED
|
| 123 |
+
Pos Neu Neg
|
| 124 |
+
ACTUAL
|
| 125 |
+
Pos 5,173 175 133 (94.4% correct)
|
| 126 |
+
Neu 151 215 248 (35.0% correct)
|
| 127 |
+
Neg 99 179 1,994 (87.8% correct)
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
## π Usage
|
| 133 |
+
|
| 134 |
+
### Quick Start
|
| 135 |
+
|
| 136 |
+
```python
|
| 137 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 138 |
+
import torch
|
| 139 |
+
|
| 140 |
+
# Load model and tokenizer
|
| 141 |
+
model_name = "Abhishek86798/smartreview-distilroberta-sentiment"
|
| 142 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 143 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 144 |
+
|
| 145 |
+
# Example review
|
| 146 |
+
text = "Battery life is excellent but camera quality is poor"
|
| 147 |
+
|
| 148 |
+
# Tokenize and predict
|
| 149 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 150 |
+
|
| 151 |
+
with torch.no_grad():
|
| 152 |
+
outputs = model(**inputs)
|
| 153 |
+
logits = outputs.logits
|
| 154 |
+
probabilities = torch.softmax(logits, dim=-1)
|
| 155 |
+
prediction = logits.argmax(-1).item()
|
| 156 |
+
|
| 157 |
+
# Map to labels
|
| 158 |
+
labels = ["Positive", "Neutral", "Negative"]
|
| 159 |
+
sentiment = labels[prediction]
|
| 160 |
+
confidence = probabilities[0][prediction].item()
|
| 161 |
+
|
| 162 |
+
print(f"Sentiment: {sentiment}")
|
| 163 |
+
print(f"Confidence: {confidence:.2%}")
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
**Output:**
|
| 167 |
+
```
|
| 168 |
+
Sentiment: Positive
|
| 169 |
+
Confidence: 85.34%
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
### Using Pipeline
|
| 173 |
+
|
| 174 |
+
```python
|
| 175 |
+
from transformers import pipeline
|
| 176 |
+
|
| 177 |
+
# Create sentiment analysis pipeline
|
| 178 |
+
classifier = pipeline(
|
| 179 |
+
"sentiment-analysis",
|
| 180 |
+
model="Abhishek86798/smartreview-distilroberta-sentiment",
|
| 181 |
+
tokenizer="Abhishek86798/smartreview-distilroberta-sentiment"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Single prediction
|
| 185 |
+
result = classifier("Amazing phone! Battery lasts all day.")
|
| 186 |
+
print(result)
|
| 187 |
+
# [{'label': 'LABEL_0', 'score': 0.9876}] # LABEL_0 = Positive
|
| 188 |
+
|
| 189 |
+
# Batch prediction
|
| 190 |
+
reviews = [
|
| 191 |
+
"Amazing phone! Battery lasts all day.",
|
| 192 |
+
"Terrible. Phone broke after one week.",
|
| 193 |
+
"It's okay, nothing special."
|
| 194 |
+
]
|
| 195 |
+
|
| 196 |
+
results = classifier(reviews)
|
| 197 |
+
for review, result in zip(reviews, results):
|
| 198 |
+
print(f"{review} β {result['label']} ({result['score']:.2%})")
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
### Detailed Prediction Function
|
| 202 |
+
|
| 203 |
+
```python
|
| 204 |
+
def predict_sentiment_detailed(text, model, tokenizer):
|
| 205 |
+
# Get detailed sentiment prediction with all probabilities
|
| 206 |
+
# Args: text (str), model, tokenizer
|
| 207 |
+
# Returns: dict with sentiment, confidence, and probabilities
|
| 208 |
+
# Tokenize
|
| 209 |
+
inputs = tokenizer(
|
| 210 |
+
text,
|
| 211 |
+
return_tensors="pt",
|
| 212 |
+
truncation=True,
|
| 213 |
+
max_length=512,
|
| 214 |
+
padding=True
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Predict
|
| 218 |
+
with torch.no_grad():
|
| 219 |
+
outputs = model(**inputs)
|
| 220 |
+
logits = outputs.logits
|
| 221 |
+
probabilities = torch.softmax(logits, dim=-1)[0]
|
| 222 |
+
|
| 223 |
+
# Get results
|
| 224 |
+
labels = ["Positive", "Neutral", "Negative"]
|
| 225 |
+
prediction_idx = logits.argmax(-1).item()
|
| 226 |
+
|
| 227 |
+
return {
|
| 228 |
+
"text": text,
|
| 229 |
+
"sentiment": labels[prediction_idx],
|
| 230 |
+
"confidence": probabilities[prediction_idx].item(),
|
| 231 |
+
"probabilities": {
|
| 232 |
+
"positive": probabilities[0].item(),
|
| 233 |
+
"neutral": probabilities[1].item(),
|
| 234 |
+
"negative": probabilities[2].item()
|
| 235 |
+
}
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
# Example
|
| 239 |
+
result = predict_sentiment_detailed(
|
| 240 |
+
"Screen is bright and clear, love the display!",
|
| 241 |
+
model,
|
| 242 |
+
tokenizer
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
print(f"Sentiment: {result['sentiment']}")
|
| 246 |
+
print(f"Confidence: {result['confidence']:.2%}")
|
| 247 |
+
print(f"Probabilities:")
|
| 248 |
+
for sentiment, prob in result['probabilities'].items():
|
| 249 |
+
print(f" {sentiment.capitalize()}: {prob:.2%}")
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
---
|
| 253 |
+
|
| 254 |
+
## π Dataset
|
| 255 |
+
|
| 256 |
+
### Training Data
|
| 257 |
+
|
| 258 |
+
- **Source**: Amazon Cell Phones & Accessories Reviews (Kaggle)
|
| 259 |
+
- **Time Period**: 2015-2019
|
| 260 |
+
- **Total Reviews**: 67,987
|
| 261 |
+
- **Products**: 721 smartphone models
|
| 262 |
+
|
| 263 |
+
### Split Distribution
|
| 264 |
+
|
| 265 |
+
| Split | Reviews | Percentage |
|
| 266 |
+
|-------|---------|------------|
|
| 267 |
+
| Training | 39,044 | 57.4% |
|
| 268 |
+
| Validation | 8,367 | 12.3% |
|
| 269 |
+
| Test | 8,367 | 12.3% |
|
| 270 |
+
|
| 271 |
+
### Sentiment Distribution
|
| 272 |
+
|
| 273 |
+
| Sentiment | Count | Percentage | Rating Mapping |
|
| 274 |
+
|-----------|-------|------------|----------------|
|
| 275 |
+
| Positive | 32,615 | 57.5% | 4-5 stars |
|
| 276 |
+
| Neutral | 4,200 | 7.4% | 3 stars |
|
| 277 |
+
| Negative | 15,572 | 27.4% | 1-2 stars |
|
| 278 |
+
|
| 279 |
+
---
|
| 280 |
+
|
| 281 |
+
## π― Intended Use
|
| 282 |
+
|
| 283 |
+
### β
Recommended Use Cases
|
| 284 |
+
|
| 285 |
+
- Sentiment analysis of smartphone/electronics reviews
|
| 286 |
+
- Product feedback analysis for e-commerce platforms
|
| 287 |
+
- Customer satisfaction monitoring
|
| 288 |
+
- Review summarization preprocessing
|
| 289 |
+
- Aspect-based sentiment analysis (as part of ABSA pipeline)
|
| 290 |
+
|
| 291 |
+
### β Out-of-Scope Use
|
| 292 |
+
|
| 293 |
+
- Non-English reviews (model trained on English only)
|
| 294 |
+
- Non-product reviews (news articles, social media posts, etc.)
|
| 295 |
+
- Offensive content detection
|
| 296 |
+
- Sarcasm detection (known limitation)
|
| 297 |
+
- Real-time chat/conversation analysis
|
| 298 |
+
|
| 299 |
+
---
|
| 300 |
+
|
| 301 |
+
## β οΈ Limitations
|
| 302 |
+
|
| 303 |
+
1. **Neutral Class Performance**: F1-score of 36.35% due to severe class imbalance (only 7.4% of training data). The model tends to classify neutral reviews as positive or negative.
|
| 304 |
+
|
| 305 |
+
2. **Sarcasm Detection**: Model struggles with sarcastic language. Example: *"Great, another phone that breaks after a week"* may be classified as positive.
|
| 306 |
+
|
| 307 |
+
3. **Domain Specificity**: Trained specifically on smartphone reviews. Performance may degrade on other product categories without domain adaptation.
|
| 308 |
+
|
| 309 |
+
4. **Context-Free Predictions**: Doesn't consider user expectations or product price range. *"Battery lasts 4 hours"* might be negative for smartphones but positive for smartwatches.
|
| 310 |
+
|
| 311 |
+
5. **Mixed Sentiments**: Reviews with multiple conflicting opinions may be misclassified based on the dominant sentiment.
|
| 312 |
+
|
| 313 |
+
---
|
| 314 |
+
|
| 315 |
+
## π§ Training Details
|
| 316 |
+
|
| 317 |
+
### Hyperparameters
|
| 318 |
+
|
| 319 |
+
```yaml
|
| 320 |
+
Model:
|
| 321 |
+
base_model: distilroberta-base
|
| 322 |
+
num_labels: 3
|
| 323 |
+
max_position_embeddings: 512
|
| 324 |
+
hidden_size: 768
|
| 325 |
+
num_hidden_layers: 6
|
| 326 |
+
num_attention_heads: 12
|
| 327 |
+
dropout: 0.1
|
| 328 |
+
|
| 329 |
+
Training:
|
| 330 |
+
learning_rate: 2e-5
|
| 331 |
+
batch_size: 4
|
| 332 |
+
gradient_accumulation_steps: 4
|
| 333 |
+
effective_batch_size: 16
|
| 334 |
+
epochs: 5
|
| 335 |
+
warmup_steps: 500
|
| 336 |
+
weight_decay: 0.01
|
| 337 |
+
optimizer: AdamW
|
| 338 |
+
fp16: true
|
| 339 |
+
max_grad_norm: 1.0
|
| 340 |
+
|
| 341 |
+
Hardware:
|
| 342 |
+
gpu: NVIDIA RTX 3050 (4GB VRAM)
|
| 343 |
+
memory_usage: ~2.5 GB
|
| 344 |
+
training_time: 67 minutes
|
| 345 |
+
```
|
| 346 |
+
|
| 347 |
+
### Training Loss Progression
|
| 348 |
+
|
| 349 |
+
| Epoch | Train Loss | Val Loss | Val Accuracy |
|
| 350 |
+
|-------|------------|----------|--------------|
|
| 351 |
+
| 1 | 0.3832 | 0.3724 | 87.22% |
|
| 352 |
+
| 2 | 0.2833 | 0.3274 | 88.17% |
|
| 353 |
+
| 3 | 0.1935 | 0.3740 | 88.22% |
|
| 354 |
+
| 4 | 0.1661 | 0.4177 | 88.68% |
|
| 355 |
+
| 5 | 0.1328 | 0.4728 | 88.38% |
|
| 356 |
+
|
| 357 |
+
**Best Model**: Epoch 4 (highest validation accuracy)
|
| 358 |
+
|
| 359 |
+
---
|
| 360 |
+
|
| 361 |
+
## π Comparison with Other Models
|
| 362 |
+
|
| 363 |
+
| Model | Parameters | Accuracy | Training Time | GPU Memory |
|
| 364 |
+
|-------|------------|----------|---------------|------------|
|
| 365 |
+
| SVM (TF-IDF) | - | 78.4% | <5 min | <1 GB |
|
| 366 |
+
| LSTM | 2M | 82.3% | ~45 min | ~1.5 GB |
|
| 367 |
+
| BERT-base | 110M | 85.7% | ~90 min | ~3.2 GB |
|
| 368 |
+
| **SmartReview (Ours)** | **82M** | **88.23%** | **67 min** | **2.5 GB** |
|
| 369 |
+
| RoBERTa-base | 125M | ~89-90% | ~120 min | ~3.8 GB |
|
| 370 |
+
|
| 371 |
+
**Key Advantage**: Achieves competitive accuracy with 34% fewer parameters and 44% faster training than RoBERTa-base.
|
| 372 |
+
|
| 373 |
+
---
|
| 374 |
+
|
| 375 |
+
## π Bias and Fairness
|
| 376 |
+
|
| 377 |
+
- Model trained on Amazon reviews from 2015-2019
|
| 378 |
+
- May reflect temporal biases (older smartphone features/expectations)
|
| 379 |
+
- Performance may vary across different price ranges and brands
|
| 380 |
+
- Dataset primarily contains English reviews from US market
|
| 381 |
+
- Recommended to validate on your specific use case and domain
|
| 382 |
+
|
| 383 |
+
---
|
| 384 |
+
|
| 385 |
+
## π Citation
|
| 386 |
+
|
| 387 |
+
If you use this model in your research or applications, please cite:
|
| 388 |
+
|
| 389 |
+
```bibtex
|
| 390 |
+
@misc{smartreview2025,
|
| 391 |
+
author = {Abhishek},
|
| 392 |
+
title = {SmartReview: Efficient Aspect-Based Sentiment Analysis using Domain-Adapted DistilRoBERTa},
|
| 393 |
+
year = {2025},
|
| 394 |
+
publisher = {Hugging Face},
|
| 395 |
+
journal = {Hugging Face Model Hub},
|
| 396 |
+
howpublished = {\url{https://huggingface.co/Abhishek86798/smartreview-distilroberta-sentiment}}
|
| 397 |
+
}
|
| 398 |
+
```
|
| 399 |
+
|
| 400 |
+
---
|
| 401 |
+
|
| 402 |
+
## π Additional Resources
|
| 403 |
+
|
| 404 |
+
- **Project Repository**: [GitHub - SmartReview](https://github.com/Abhishek86798/smartAnalysis)
|
| 405 |
+
- **Full Technical Report**: Available in repository
|
| 406 |
+
- **Training Notebooks**: 6 complete Jupyter notebooks
|
| 407 |
+
- **ABSA Pipeline**: Complete aspect-based sentiment analysis system
|
| 408 |
+
- **Contact**: [Your Email]
|
| 409 |
+
|
| 410 |
+
---
|
| 411 |
+
|
| 412 |
+
## π₯ Model Card Authors
|
| 413 |
+
|
| 414 |
+
**Abhishek** ([Abhishek86798](https://github.com/Abhishek86798))
|
| 415 |
+
|
| 416 |
+
---
|
| 417 |
+
|
| 418 |
+
## π License
|
| 419 |
+
|
| 420 |
+
This model is released under the **Apache License 2.0**.
|
| 421 |
+
|
| 422 |
+
---
|
| 423 |
+
|
| 424 |
+
## π Acknowledgments
|
| 425 |
+
|
| 426 |
+
- **Base Model**: `distilroberta-base` by Hugging Face
|
| 427 |
+
- **Dataset**: Amazon Reviews dataset (Kaggle)
|
| 428 |
+
- **Framework**: Hugging Face Transformers
|
| 429 |
+
- **Inspiration**: Research in domain adaptation and efficient NLP models
|
| 430 |
+
|
| 431 |
+
---
|
| 432 |
+
|
| 433 |
+
## π Support
|
| 434 |
+
|
| 435 |
+
For issues, questions, or feedback:
|
| 436 |
+
- Open an issue on GitHub
|
| 437 |
+
- Contact: [Your Email]
|
| 438 |
+
- Hugging Face Discussions
|
| 439 |
+
|
| 440 |
+
---
|
| 441 |
+
|
| 442 |
+
**Model Version**: 1.0
|
| 443 |
+
**Last Updated**: November 10, 2025
|
| 444 |
+
**Status**: Production-Ready β
|
| 445 |
+
|
| 446 |
+
---
|
| 447 |
+
|
| 448 |
+
*Making advanced sentiment analysis accessible for everyone!* π
|