See axolotl config
axolotl version: 0.12.2
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
# Automatically upload checkpoint and final model to HF
tokenizer_type: LlamaTokenizer
hub_model_id: anselmlong/almost-anselm
load_in_4bit: true
chat_template: chatml
datasets:
- path: data/processed/sft_train_new.json
type: chat_template
field_messages: messages
message_property_mappings:
role: from
content: value
roles:
assistant:
- system
- gpt
- model
- assistant
user:
- human
- user
# step 3
roles_to_train: ["assistant"]
train_on_eos: "turn"
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: models/base_v5
adapter: qlora
lora_model_dir:
sequence_len: 768
sample_packing: false
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: false
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
auto_resume_from_checkpoints: true
logging_steps: 50
flash_attention: false
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
save_first_step: true # uncomment this to validate checkpoint saving works with your config
almost-anselm
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the data/processed/sft_train_new.json dataset. It achieves the following results on the evaluation set:
- Loss: 3.6523
- Memory/max Mem Active(gib): 6.62
- Memory/max Mem Allocated(gib): 6.62
- Memory/device Mem Reserved(gib): 7.07
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 38
- training_steps: 381
Training results
| Training Loss | Epoch | Step | Validation Loss | Mem Active(gib) | Mem Allocated(gib) | Mem Reserved(gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 5.0383 | 6.62 | 6.62 | 6.89 |
| 3.9016 | 0.2521 | 96 | 3.7967 | 6.62 | 6.62 | 7.07 |
| 3.4949 | 0.5041 | 192 | 3.6951 | 6.62 | 6.62 | 7.07 |
| 3.5013 | 0.7562 | 288 | 3.6523 | 6.62 | 6.62 | 7.07 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 39
Model tree for anselmlong/almost-anselm
Base model
mistralai/Mistral-7B-v0.1