Built with Axolotl

See axolotl config

axolotl version: 0.12.2

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
# Automatically upload checkpoint and final model to HF
tokenizer_type: LlamaTokenizer
hub_model_id: anselmlong/almost-anselm

load_in_4bit: true

chat_template: chatml
datasets:
  - path: data/processed/sft_train_new.json
    type: chat_template
    field_messages: messages
    message_property_mappings:
      role: from
      content: value

    roles:
      assistant:
        - system
        - gpt
        - model
        - assistant
      user:
        - human
        - user

    # step 3
    roles_to_train: ["assistant"]
    train_on_eos: "turn"

dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: models/base_v5 

adapter: qlora
lora_model_dir:

sequence_len: 768
sample_packing: false


lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: false
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: false

gradient_checkpointing: true
resume_from_checkpoint:
auto_resume_from_checkpoints: true
logging_steps: 50
flash_attention: false

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

save_first_step: true  # uncomment this to validate checkpoint saving works with your config

almost-anselm

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the data/processed/sft_train_new.json dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6523
  • Memory/max Mem Active(gib): 6.62
  • Memory/max Mem Allocated(gib): 6.62
  • Memory/device Mem Reserved(gib): 7.07

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 38
  • training_steps: 381

Training results

Training Loss Epoch Step Validation Loss Mem Active(gib) Mem Allocated(gib) Mem Reserved(gib)
No log 0 0 5.0383 6.62 6.62 6.89
3.9016 0.2521 96 3.7967 6.62 6.62 7.07
3.4949 0.5041 192 3.6951 6.62 6.62 7.07
3.5013 0.7562 288 3.6523 6.62 6.62 7.07

Framework versions

  • PEFT 0.17.0
  • Transformers 4.55.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
39
Safetensors
Model size
7B params
Tensor type
F32
BF16
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for anselmlong/almost-anselm

Adapter
(2336)
this model