| { | |
| "best_metric": null, | |
| "best_model_checkpoint": null, | |
| "epoch": 0.08279516476237787, | |
| "eval_steps": 100, | |
| "global_step": 1000, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.008279516476237788, | |
| "eval_accuracy": 0.5510729122994245, | |
| "eval_loss": 2.3376457691192627, | |
| "eval_runtime": 6.8445, | |
| "eval_samples_per_second": 59.61, | |
| "eval_steps_per_second": 1.899, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 0.016559032952475575, | |
| "eval_accuracy": 0.5764662925666846, | |
| "eval_loss": 2.173574447631836, | |
| "eval_runtime": 6.6808, | |
| "eval_samples_per_second": 61.071, | |
| "eval_steps_per_second": 1.946, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 0.024838549428713365, | |
| "eval_accuracy": 0.5929699147520929, | |
| "eval_loss": 2.0678670406341553, | |
| "eval_runtime": 6.4137, | |
| "eval_samples_per_second": 63.614, | |
| "eval_steps_per_second": 2.027, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 0.03311806590495115, | |
| "eval_accuracy": 0.6055573666749765, | |
| "eval_loss": 1.9839483499526978, | |
| "eval_runtime": 6.4017, | |
| "eval_samples_per_second": 63.734, | |
| "eval_steps_per_second": 2.031, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 0.04139758238118894, | |
| "grad_norm": 8.5625, | |
| "learning_rate": 4.931004029364685e-05, | |
| "loss": 2.2761, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 0.04139758238118894, | |
| "eval_accuracy": 0.6084943562272814, | |
| "eval_loss": 1.9611371755599976, | |
| "eval_runtime": 6.4249, | |
| "eval_samples_per_second": 63.503, | |
| "eval_steps_per_second": 2.023, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 0.04967709885742673, | |
| "eval_accuracy": 0.6203082851637765, | |
| "eval_loss": 1.905377984046936, | |
| "eval_runtime": 6.4365, | |
| "eval_samples_per_second": 63.388, | |
| "eval_steps_per_second": 2.02, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 0.057956615333664516, | |
| "eval_accuracy": 0.6241699612328715, | |
| "eval_loss": 1.8838109970092773, | |
| "eval_runtime": 6.4118, | |
| "eval_samples_per_second": 63.632, | |
| "eval_steps_per_second": 2.028, | |
| "step": 700 | |
| }, | |
| { | |
| "epoch": 0.0662361318099023, | |
| "eval_accuracy": 0.6295839990759813, | |
| "eval_loss": 1.8403326272964478, | |
| "eval_runtime": 6.397, | |
| "eval_samples_per_second": 63.78, | |
| "eval_steps_per_second": 2.032, | |
| "step": 800 | |
| }, | |
| { | |
| "epoch": 0.07451564828614009, | |
| "eval_accuracy": 0.6300428691724719, | |
| "eval_loss": 1.8234734535217285, | |
| "eval_runtime": 6.4304, | |
| "eval_samples_per_second": 63.449, | |
| "eval_steps_per_second": 2.022, | |
| "step": 900 | |
| }, | |
| { | |
| "epoch": 0.08279516476237787, | |
| "grad_norm": 7.65625, | |
| "learning_rate": 4.862008058729371e-05, | |
| "loss": 1.8887, | |
| "step": 1000 | |
| }, | |
| { | |
| "epoch": 0.08279516476237787, | |
| "eval_accuracy": 0.6351211866350639, | |
| "eval_loss": 1.7919981479644775, | |
| "eval_runtime": 6.4, | |
| "eval_samples_per_second": 63.75, | |
| "eval_steps_per_second": 2.031, | |
| "step": 1000 | |
| }, | |
| { | |
| "epoch": 0.08279516476237787, | |
| "step": 1000, | |
| "total_flos": 2.198926000128e+16, | |
| "train_loss": 2.0824306030273436, | |
| "train_runtime": 944.4845, | |
| "train_samples_per_second": 613.773, | |
| "train_steps_per_second": 38.364 | |
| } | |
| ], | |
| "logging_steps": 500, | |
| "max_steps": 36234, | |
| "num_input_tokens_seen": 0, | |
| "num_train_epochs": 3, | |
| "save_steps": 200, | |
| "total_flos": 2.198926000128e+16, | |
| "train_batch_size": 16, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |