--- language: en license: mit library_name: transformers tags: - computer-vision - drowsiness-detection - driver-safety - cnn - tensorflow model_name: drowsiness_model.h5 datasets: - ckcl/drowsiness_dataset - custom metrics: - accuracy - binary-crossentropy widget: - text: Example input pipeline_tag: image-classification base_model: - google/mobilenet_v2_1.0_224 --- # Driver Drowsiness Detection Model This model is designed to detect driver drowsiness from facial images using a CNN architecture. ## Model Details - Architecture: CNN - Input: Facial images (64x64x3) - Output: Binary classification (drowsy/not drowsy) ## Usage ```python import tensorflow as tf import cv2 import numpy as np # Load model model = tf.keras.models.load_model('drowsiness_model.h5') # Preprocess image img = cv2.imread('face.jpg') img = cv2.resize(img, (64, 64)) img = img / 255.0 img = np.expand_dims(img, axis=0) # Make prediction prediction = model.predict(img) is_drowsy = prediction[0][0] > 0.5 ``` ## Training Details - Dataset: Custom driver drowsiness dataset - Training method: Binary cross-entropy loss with Adam optimizer - Validation split: 20% - Early stopping with patience=3 ## Model Architecture - Input Layer: 64x64x3 images - Convolutional Layers: - Conv2D(32, 3x3) + BatchNorm + ReLU - MaxPooling2D(2x2) - Conv2D(64, 3x3) + BatchNorm + ReLU - MaxPooling2D(2x2) - Conv2D(128, 3x3) + BatchNorm + ReLU - MaxPooling2D(2x2) - Dense Layers: - Dense(128) + BatchNorm + ReLU - Dropout(0.5) - Dense(1) + Sigmoid ## Performance - Binary classification for drowsiness detection - Optimized for real-time inference - Suitable for embedded systems and edge devices ## License This model is released under the MIT License.