Update README.md
Browse files
README.md
CHANGED
|
@@ -1,125 +1,65 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
tags:
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
#
|
| 11 |
|
| 12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
<!--- Describe your model here -->
|
| 15 |
|
| 16 |
-
##
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
pip install -U sentence-transformers
|
| 22 |
-
```
|
| 23 |
-
|
| 24 |
-
Then you can use the model like this:
|
| 25 |
-
|
| 26 |
-
```python
|
| 27 |
-
from sentence_transformers import SentenceTransformer
|
| 28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 29 |
-
|
| 30 |
-
model = SentenceTransformer('claritylab/zero-shot-implicit-bi-encoder')
|
| 31 |
-
embeddings = model.encode(sentences)
|
| 32 |
-
print(embeddings)
|
| 33 |
-
```
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 39 |
|
| 40 |
```python
|
| 41 |
-
from
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 68 |
-
|
| 69 |
-
print("Sentence embeddings:")
|
| 70 |
-
print(sentence_embeddings)
|
| 71 |
```
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
## Evaluation Results
|
| 76 |
-
|
| 77 |
-
<!--- Describe how your model was evaluated -->
|
| 78 |
-
|
| 79 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=claritylab/zero-shot-implicit-bi-encoder)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
## Training
|
| 83 |
-
The model was trained with the parameters:
|
| 84 |
-
|
| 85 |
-
**DataLoader**:
|
| 86 |
-
|
| 87 |
-
`torch.utils.data.dataloader.DataLoader` of length 24333 with parameters:
|
| 88 |
-
```
|
| 89 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
| 90 |
-
```
|
| 91 |
-
|
| 92 |
-
**Loss**:
|
| 93 |
-
|
| 94 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
| 95 |
-
|
| 96 |
-
Parameters of the fit()-Method:
|
| 97 |
-
```
|
| 98 |
-
{
|
| 99 |
-
"epochs": 3,
|
| 100 |
-
"evaluation_steps": 100000,
|
| 101 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 102 |
-
"max_grad_norm": 1,
|
| 103 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
| 104 |
-
"optimizer_params": {
|
| 105 |
-
"lr": 2e-05
|
| 106 |
-
},
|
| 107 |
-
"scheduler": "WarmupLinear",
|
| 108 |
-
"steps_per_epoch": null,
|
| 109 |
-
"warmup_steps": 7300,
|
| 110 |
-
"weight_decay": 0.01
|
| 111 |
-
}
|
| 112 |
-
```
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
## Full Model Architecture
|
| 116 |
-
```
|
| 117 |
-
SentenceTransformer(
|
| 118 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 119 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 120 |
-
)
|
| 121 |
-
```
|
| 122 |
-
|
| 123 |
-
## Citing & Authors
|
| 124 |
-
|
| 125 |
-
<!--- Describe where people can find more information -->
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: zeroshot_classifier
|
| 3 |
tags:
|
| 4 |
+
- transformers
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- zeroshot_classifier
|
| 7 |
+
license: mit
|
| 8 |
+
datasets:
|
| 9 |
+
- claritylab/UTCD
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
pipeline_tag: zero-shot-classification
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# Zero-shot Implicit Bi-Encoder
|
| 18 |
|
| 19 |
+
This is a [sentence-transformers](https://www.SBERT.net) model.
|
| 20 |
+
It was introduced in the Findings of ACL'23 Paper **Label Agnostic Pre-training for Zero-shot Text Classification** by ***Christopher Clarke, Yuzhao Heng, Yiping Kang, Krisztian Flautner, Lingjia Tang and Jason Mars***.
|
| 21 |
+
The code for training and evaluating this model can be found [here](https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master).
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
+
## Model description
|
| 25 |
|
| 26 |
+
This model was trained via the dual encoding classification framework.
|
| 27 |
+
It is intended for zero-shot text classification.
|
| 28 |
+
It was trained via implicit training with the aspect-normalized [UTCD](https://huggingface.co/datasets/claritylab/UTCD) dataset.
|
| 29 |
|
| 30 |
+
- **Finetuned from model:** [`bert-base-uncased`](https://huggingface.co/bert-base-uncased)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
+
## Usage
|
| 34 |
|
| 35 |
+
You can use the model like this:
|
|
|
|
| 36 |
|
| 37 |
```python
|
| 38 |
+
>>> from sentence_transformers import SentenceTransformer, util as sbert_util
|
| 39 |
+
>>> model = SentenceTransformer(model_name_or_path='claritylab/zero-shot-implicit-bi-encoder')
|
| 40 |
+
|
| 41 |
+
>>> text = "I'd like to have this track onto my Classical Relaxations playlist."
|
| 42 |
+
>>> labels = [
|
| 43 |
+
>>> 'Add To Playlist', 'Book Restaurant', 'Get Weather', 'Play Music', 'Rate Book', 'Search Creative Work',
|
| 44 |
+
>>> 'Search Screening Event'
|
| 45 |
+
>>> ]
|
| 46 |
+
>>> aspect = 'intent'
|
| 47 |
+
>>> sep_token = '<|ASPECT-SEP|>'
|
| 48 |
+
>>> text = f'{aspect} {sep_token} {text}'
|
| 49 |
+
|
| 50 |
+
>>> text_embed = model.encode(text)
|
| 51 |
+
>>> label_embeds = model.encode(labels)
|
| 52 |
+
>>> scores = [sbert_util.cos_sim(text_embed, lb_embed).item() for lb_embed in label_embeds]
|
| 53 |
+
>>> print(scores)
|
| 54 |
+
|
| 55 |
+
[
|
| 56 |
+
0.6222374439239502,
|
| 57 |
+
-0.009036172181367874,
|
| 58 |
+
0.0662032887339592,
|
| 59 |
+
0.556531548500061,
|
| 60 |
+
0.09850533306598663,
|
| 61 |
+
0.3830074071884155,
|
| 62 |
+
0.11729487776756287
|
| 63 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
```
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|