Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,543 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# 💻 EAI-Taxonomy Code w/ DCLM
|
| 6 |
+
|
| 7 |
+
A **564 billion token** dataset of high-quality code curated from web data using taxonomy-based filtering.
|
| 8 |
+
|
| 9 |
+
## 🎯 Dataset Overview
|
| 10 |
+
|
| 11 |
+
This dataset is part of the [**Essential-Web**](https://huggingface.co/datasets/EssentialAI/essential-web-v1.0) project, which introduces a new paradigm for dataset curation using expressive metadata and simple semantic filters. Unlike traditional code datasets that require complex domain-specific pipelines, our approach leverages a 12-category taxonomy to efficiently identify and extract high-quality code data.
|
| 12 |
+
|
| 13 |
+
**💡 EAI-Taxonomy Code w/ DCLM** (564B tokens): Documents targeting code that exhibit intermediate to advanced reasoning, combined with the DCLM classifier to filter for instruction-dense documents. Also includes mathematics content (`51 - Mathematics`) to match the scope of existing code datasets.
|
| 14 |
+
|
| 15 |
+
## 🏆 Performance
|
| 16 |
+
|
| 17 |
+
Our taxonomy-based approach achieves competitive results with significantly less curation effort:
|
| 18 |
+
|
| 19 |
+
| Dataset | HumanEval+ | MBPP+ | MMLU-CS | Curation Complexity |
|
| 20 |
+
|---------|------------|--------|---------|-------------------|
|
| 21 |
+
| DCLM-baseline | 28.0% | 45.5% | 32.0% | General web filtering |
|
| 22 |
+
| OpenCoder FW | 26.2% | 45.8% | 27.7% | Complex domain pipeline |
|
| 23 |
+
| EAI-Taxonomy Code | 27.4% | **46.6%** | 29.0% | Simple semantic filter |
|
| 24 |
+
| EAI-Taxonomy Code w/ DCLM | **28.7%** | 45.0% | **47.0%** | + DCLM classifier |
|
| 25 |
+
|
| 26 |
+
*Results show competitive code generation performance with a **+46.8% improvement** in computer science knowledge (MMLU-CS) compared to baseline.*
|
| 27 |
+
|
| 28 |
+
## 🔍 Key Findings
|
| 29 |
+
|
| 30 |
+
- **Code Generation**: All datasets perform within statistical error on single-function generation benchmarks (HumanEval+, MBPP+)
|
| 31 |
+
- **Code Knowledge**: Clear impact on general computer science knowledge when using taxonomy-curated data
|
| 32 |
+
- **Efficiency**: Achieves strong performance without complex domain-specific curation pipelines
|
| 33 |
+
|
| 34 |
+
# Dataset Schema Documentation
|
| 35 |
+
|
| 36 |
+
## Overview
|
| 37 |
+
|
| 38 |
+
This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics.
|
| 39 |
+
|
| 40 |
+
## Core Fields
|
| 41 |
+
|
| 42 |
+
| Field | Type | Description | Path |
|
| 43 |
+
|-------|------|-------------|------|
|
| 44 |
+
| `id` | `Int64` | Unique identifier based on document hash | `id` |
|
| 45 |
+
| `text` | `String` | The main textual content of the document | `text` |
|
| 46 |
+
|
| 47 |
+
## EAI Taxonomy Classification
|
| 48 |
+
|
| 49 |
+
Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset. The taxonomy is designed to provide detailed subject categorization, document type identification, content quality assessment, and extraction quality indicators.
|
| 50 |
+
|
| 51 |
+
<details>
|
| 52 |
+
<summary><strong>Free Decimal Correspondence (FDC)</strong></summary>
|
| 53 |
+
|
| 54 |
+
A Dewey Decimal-inspired classification system with 3-level hierarchical labels. The FDC provides nested categories where each successive level refines its parent category. It's designed to be compatible with the Dewey Decimal System for library cataloging.
|
| 55 |
+
|
| 56 |
+
**Level Structure:**
|
| 57 |
+
- **Level 1**: Top-level categories (0-9) covering broad subject areas like General works, Philosophy, Religion, Social Sciences, etc.
|
| 58 |
+
- **Level 2**: Sub-divisions (00-99) that refine Level 1 categories
|
| 59 |
+
- **Level 3**: Specific categories (000-999) that further refine Level 2 categories
|
| 60 |
+
|
| 61 |
+
| Component | Description | Path |
|
| 62 |
+
|-----------|-------------|------|
|
| 63 |
+
| Primary Code | Main classification code | `eai_taxonomy.free_decimal_correspondence.primary.code` |
|
| 64 |
+
| Primary Level 1 | Top-level category (0=General works, 1=Philosophy, 2=Religion, 3=Social Sciences, 4=Language, 5=Science, 6=Technology, 7=Arts, 8=Literature, 9=History/Geography) | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_1` |
|
| 65 |
+
| Primary Level 2 | Mid-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_2` |
|
| 66 |
+
| Primary Level 3 | Specific category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_3` |
|
| 67 |
+
| Secondary Code | Alternative classification code | `eai_taxonomy.free_decimal_correspondence.secondary.code` |
|
| 68 |
+
| Secondary Level 1 | Alternative top-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1` |
|
| 69 |
+
| Secondary Level 2 | Alternative mid-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2` |
|
| 70 |
+
| Secondary Level 3 | Alternative specific category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3` |
|
| 71 |
+
|
| 72 |
+
We recommend this viewer for easily navigating the FDC categories when curating filters: https://www.librarything.com/mds
|
| 73 |
+
|
| 74 |
+
</details>
|
| 75 |
+
|
| 76 |
+
<details>
|
| 77 |
+
<summary><strong>Bloom's Taxonomy Integration</strong></summary>
|
| 78 |
+
|
| 79 |
+
Based on Anderson and Krathwohl's 2001 revision of Bloom's Taxonomy of Educational Objectives, providing two complementary categorization dimensions for educational content analysis.
|
| 80 |
+
|
| 81 |
+
### Knowledge Domain
|
| 82 |
+
Categorizes the type of knowledge demonstrated in the document:
|
| 83 |
+
|
| 84 |
+
| Component | Description | Path |
|
| 85 |
+
|-----------|-------------|------|
|
| 86 |
+
| Primary Code | Main knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.primary.code` |
|
| 87 |
+
| Primary Label | Main knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.primary.label` |
|
| 88 |
+
| Secondary Code | Alternative knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.secondary.code` |
|
| 89 |
+
| Secondary Label | Alternative knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.secondary.label` |
|
| 90 |
+
|
| 91 |
+
**Possible Values:**
|
| 92 |
+
| Code | Label | Description |
|
| 93 |
+
|------|-------|-------------|
|
| 94 |
+
| `-1` | Abstain | Unable to determine |
|
| 95 |
+
| `1` | Factual | Basic elements to learn or solve problems |
|
| 96 |
+
| `2` | Conceptual | Interrelationships between basic elements within larger context |
|
| 97 |
+
| `3` | Procedural | Methods and techniques in the discipline |
|
| 98 |
+
| `4` | Metacognitive | Awareness of how learning works in relation to oneself |
|
| 99 |
+
|
| 100 |
+
### Cognitive Processing Level
|
| 101 |
+
Assesses the learning and thinking skill levels demonstrated by the document author:
|
| 102 |
+
|
| 103 |
+
| Component | Description | Path |
|
| 104 |
+
|-----------|-------------|------|
|
| 105 |
+
| Primary Code | Main cognitive process code | `eai_taxonomy.bloom_cognitive_process.primary.code` |
|
| 106 |
+
| Primary Label | Main cognitive process label | `eai_taxonomy.bloom_cognitive_process.primary.label` |
|
| 107 |
+
| Secondary Code | Alternative cognitive process code | `eai_taxonomy.bloom_cognitive_process.secondary.code` |
|
| 108 |
+
| Secondary Label | Alternative cognitive process label | `eai_taxonomy.bloom_cognitive_process.secondary.label` |
|
| 109 |
+
|
| 110 |
+
**Possible Values:**
|
| 111 |
+
| Code | Label | Description |
|
| 112 |
+
|------|-------|-------------|
|
| 113 |
+
| `-1` | Abstain | Unable to determine |
|
| 114 |
+
| `1` | Remember | Retrieve relevant knowledge from memory |
|
| 115 |
+
| `2` | Understand | Determine meaning of instructional messages |
|
| 116 |
+
| `3` | Apply | Use a procedure in a given situation |
|
| 117 |
+
| `4` | Analyze | Break materials into components and determine relationships |
|
| 118 |
+
| `5` | Evaluate | Make judgments based on criteria and standards |
|
| 119 |
+
| `6` | Create | Create new or original work |
|
| 120 |
+
|
| 121 |
+
</details>
|
| 122 |
+
|
| 123 |
+
<details>
|
| 124 |
+
<summary><strong>Document Characteristics</strong></summary>
|
| 125 |
+
|
| 126 |
+
### Document Type v1
|
| 127 |
+
In-house classification of common web document types and formats:
|
| 128 |
+
|
| 129 |
+
| Component | Description | Path |
|
| 130 |
+
|-----------|-------------|------|
|
| 131 |
+
| Primary Code | Main document type code | `eai_taxonomy.document_type_v1.primary.code` |
|
| 132 |
+
| Primary Label | Main document type label | `eai_taxonomy.document_type_v1.primary.label` |
|
| 133 |
+
| Secondary Code | Alternative document type code | `eai_taxonomy.document_type_v1.secondary.code` |
|
| 134 |
+
| Secondary Label | Alternative document type label | `eai_taxonomy.document_type_v1.secondary.label` |
|
| 135 |
+
|
| 136 |
+
**Possible Values:**
|
| 137 |
+
| Code | Label | Examples |
|
| 138 |
+
|------|-------|----------|
|
| 139 |
+
| `-1` | Abstain | Unable to classify |
|
| 140 |
+
| `1` | News/Editorial | CNN articles, opinion columns |
|
| 141 |
+
| `2` | Academic/Research | ArXiv papers, research articles |
|
| 142 |
+
| `3` | Reference/Encyclopedic/Educational | FAQs, Wikipedia entries |
|
| 143 |
+
| `4` | Code/Software | GitHub repos, code examples |
|
| 144 |
+
| `5` | Social/Forum | Conversation threads, Q&A boards |
|
| 145 |
+
| `6` | Promotional/Advertisement | Product pages, calls to action |
|
| 146 |
+
| `7` | Search/Directory/Bibliography | Link pages, search results |
|
| 147 |
+
| `8` | Adult/Pornographic | Adult content |
|
| 148 |
+
| `9` | Personal/Misc | Blogs, user profiles |
|
| 149 |
+
| `10` | Machine-Generated | Lorem ipsum, garbled text |
|
| 150 |
+
| `11` | Legal/Regulatory | Contracts, terms of service |
|
| 151 |
+
| `12` | Government/Political | Legislation, press releases |
|
| 152 |
+
| `13` | Literary/Creative | Poems, short stories |
|
| 153 |
+
| `14` | Reviews/Critiques | Film critiques, product reviews |
|
| 154 |
+
| `15` | E-Commerce/Marketplace | eBay listings, Amazon pages |
|
| 155 |
+
| `16` | Images/Videos/Audio | YouTube videos, Imgur pages |
|
| 156 |
+
| `17` | Other/Unclassified | Documents that resist classification |
|
| 157 |
+
|
| 158 |
+
### Document Type v2
|
| 159 |
+
Updated classification based on WebOrganizer taxonomy with refined categories for improved document classification accuracy:
|
| 160 |
+
|
| 161 |
+
| Component | Description | Path |
|
| 162 |
+
|-----------|-------------|------|
|
| 163 |
+
| Primary Code | Main document type code (v2) | `eai_taxonomy.document_type_v2.primary.code` |
|
| 164 |
+
| Primary Label | Main document type label (v2) | `eai_taxonomy.document_type_v2.primary.label` |
|
| 165 |
+
| Secondary Code | Alternative document type code (v2) | `eai_taxonomy.document_type_v2.secondary.code` |
|
| 166 |
+
| Secondary Label | Alternative document type label (v2) | `eai_taxonomy.document_type_v2.secondary.label` |
|
| 167 |
+
|
| 168 |
+
**Complete Value Mapping:**
|
| 169 |
+
| Code | Label | Examples |
|
| 170 |
+
|------|-------|----------|
|
| 171 |
+
| `-1` | Abstain | Documents requiring human review |
|
| 172 |
+
| `1` | About (Org.) | Company about pages, mission statements |
|
| 173 |
+
| `2` | About (Personal) | Personal bios, LinkedIn profiles |
|
| 174 |
+
| `3` | Academic Writing | Research papers, abstracts, dissertations |
|
| 175 |
+
| `4` | Audio Transcript | Interview transcripts, court records, captions |
|
| 176 |
+
| `5` | Comment Section | Reddit threads, blog comments |
|
| 177 |
+
| `6` | Content Listing | Site maps, product catalogs, directory listings |
|
| 178 |
+
| `7` | Creative Writing | Song lyrics, novel excerpts, poetry |
|
| 179 |
+
| `8` | Documentation | API docs, README files, user manuals |
|
| 180 |
+
| `9` | FAQ | FAQ pages, Q&A lists |
|
| 181 |
+
| `10` | Knowledge Article | Wikipedia articles, Britannica entries |
|
| 182 |
+
| `11` | Legal Notices | Privacy policies, license agreements, terms of service |
|
| 183 |
+
| `12` | Listicle | Buzzfeed-style articles, "Top 10" lists |
|
| 184 |
+
| `13` | News (Org.) | Government blog posts, corporate announcements |
|
| 185 |
+
| `14` | News Article | Newspaper articles, CNN content, breaking news |
|
| 186 |
+
| `15` | Nonfiction Writing | Editorials, obituaries, memoirs, opinion pieces |
|
| 187 |
+
| `16` | Personal Blog | Personal journals, diary entries, lifestyle blogs |
|
| 188 |
+
| `17` | Product Page | Product descriptions, course offerings, sales pages |
|
| 189 |
+
| `18` | Q&A Forum | Quora posts, Stack Exchange discussions |
|
| 190 |
+
| `19` | Spam / Ads | SEO keyword stuffing, promotional spam |
|
| 191 |
+
| `20` | Structured Data | Datasheets, glossaries, JSON files, databases |
|
| 192 |
+
| `21` | Customer Support | Help articles, troubleshooting guides |
|
| 193 |
+
| `22` | Truncated | Paywalled sites, image galleries, partial content |
|
| 194 |
+
| `23` | Tutorial | Cooking recipes, WikiHow pages, step-by-step guides |
|
| 195 |
+
| `24` | User Review | Yelp reviews, TripAdvisor feedback, product reviews |
|
| 196 |
+
| `25` | Other/Unclassified | Miscellaneous documents not fitting other categories |
|
| 197 |
+
|
| 198 |
+
### Extraction Artifacts
|
| 199 |
+
Assessment of technical extraction quality, identifying issues from HTML-to-text conversion:
|
| 200 |
+
|
| 201 |
+
| Component | Description | Path |
|
| 202 |
+
|-----------|-------------|------|
|
| 203 |
+
| Primary Code | Main extraction artifact code | `eai_taxonomy.extraction_artifacts.primary.code` |
|
| 204 |
+
| Primary Label | Main extraction artifact label | `eai_taxonomy.extraction_artifacts.primary.label` |
|
| 205 |
+
| Secondary Code | Alternative extraction artifact code | `eai_taxonomy.extraction_artifacts.secondary.code` |
|
| 206 |
+
| Secondary Label | Alternative extraction artifact label | `eai_taxonomy.extraction_artifacts.secondary.label` |
|
| 207 |
+
|
| 208 |
+
**Possible Values:**
|
| 209 |
+
| Code | Label | Description |
|
| 210 |
+
|------|-------|-------------|
|
| 211 |
+
| `-1` | Abstain | Unable to determine |
|
| 212 |
+
| `0` | No Artifacts | Clean text with no leftover HTML or irrelevant elements |
|
| 213 |
+
| `1` | Leftover HTML | HTML/code artifacts remaining after extraction |
|
| 214 |
+
| `2` | Text Extraction Errors | Broken math expressions, encoding errors, improperly parsed tables |
|
| 215 |
+
| `3` | Irrelevant Content | Headers, footers, nav menus extracted by mistake |
|
| 216 |
+
| `4` | Indeterminate | Insufficient content to judge |
|
| 217 |
+
|
| 218 |
+
### Missing Content
|
| 219 |
+
Assessment of content completeness and extraction success:
|
| 220 |
+
|
| 221 |
+
| Component | Description | Path |
|
| 222 |
+
|-----------|-------------|------|
|
| 223 |
+
| Primary Code | Main missing content code | `eai_taxonomy.missing_content.primary.code` |
|
| 224 |
+
| Primary Label | Main missing content label | `eai_taxonomy.missing_content.primary.label` |
|
| 225 |
+
| Secondary Code | Alternative missing content code | `eai_taxonomy.missing_content.secondary.code` |
|
| 226 |
+
| Secondary Label | Alternative missing content label | `eai_taxonomy.missing_content.secondary.label` |
|
| 227 |
+
|
| 228 |
+
**Possible Values:**
|
| 229 |
+
| Code | Label | Description |
|
| 230 |
+
|------|-------|-------------|
|
| 231 |
+
| `-1` | Abstain | Unable to determine |
|
| 232 |
+
| `0` | No Missing Content | Complete and coherent text |
|
| 233 |
+
| `1` | Truncated Snippets | Obvious "...", incomplete paragraphs, cut-off text |
|
| 234 |
+
| `2` | Click Here References | "Download here", "Click here" without linked content |
|
| 235 |
+
| `3` | Incoherent Flow | Unreadable or illogical flow due to missing context |
|
| 236 |
+
| `4` | Missing Images or Figures | Placeholders or references to missing visual content |
|
| 237 |
+
| `5` | Missing Referenced Data | References to absent tables/datasets (e.g., "See Table 3") |
|
| 238 |
+
| `6` | Indeterminate | Insufficient content to judge |
|
| 239 |
+
|
| 240 |
+
### Text Structure Information
|
| 241 |
+
|
| 242 |
+
| Field | Type | Description | Path |
|
| 243 |
+
|-------|------|-------------|------|
|
| 244 |
+
| Line Start Indices | `List[Int32]` | Starting indices of each line | `line_start_n_end_idx.line_start_idx` |
|
| 245 |
+
| Line End Indices | `List[Int32]` | Ending indices of each line | `line_start_n_end_idx.line_end_idx` |
|
| 246 |
+
|
| 247 |
+
</details>
|
| 248 |
+
|
| 249 |
+
<details>
|
| 250 |
+
<summary><strong>Content Quality Dimensions</strong></summary>
|
| 251 |
+
|
| 252 |
+
Quality assessment inspired by NaturalReasoning and FineWeb efforts to categorize web data by information sophistication.
|
| 253 |
+
|
| 254 |
+
### Reasoning Depth
|
| 255 |
+
Assesses the complexity and sophistication of logical reasoning in the document:
|
| 256 |
+
|
| 257 |
+
| Component | Description | Path |
|
| 258 |
+
|-----------|-------------|------|
|
| 259 |
+
| Primary Code | Main reasoning depth code | `eai_taxonomy.reasoning_depth.primary.code` |
|
| 260 |
+
| Primary Label | Main reasoning depth label | `eai_taxonomy.reasoning_depth.primary.label` |
|
| 261 |
+
| Secondary Code | Alternative reasoning depth code | `eai_taxonomy.reasoning_depth.secondary.code` |
|
| 262 |
+
| Secondary Label | Alternative reasoning depth label | `eai_taxonomy.reasoning_depth.secondary.label` |
|
| 263 |
+
|
| 264 |
+
**Possible Values:**
|
| 265 |
+
| Code | Label | Description |
|
| 266 |
+
|------|-------|-------------|
|
| 267 |
+
| `-1` | Abstain | Unable to determine |
|
| 268 |
+
| `1` | No Reasoning | Facts present but no evidence of reasoning |
|
| 269 |
+
| `2` | Basic Reasoning | Basic analysis with minimal explanation and summarization |
|
| 270 |
+
| `3` | Intermediate Reasoning | Some logical steps connecting ideas and structured thinking |
|
| 271 |
+
| `4` | Advanced Reasoning | Multi-step reasoning and thorough analysis with well-developed explanations |
|
| 272 |
+
| `5` | Exceptional Reasoning | Novel abstractions, theoretical frameworks, long chain-of-thought, original insights, or proofs |
|
| 273 |
+
| `6` | Indeterminate | Insufficient context to judge |
|
| 274 |
+
|
| 275 |
+
### Technical Correctness
|
| 276 |
+
Evaluates the accuracy and precision of technical information:
|
| 277 |
+
|
| 278 |
+
| Component | Description | Path |
|
| 279 |
+
|-----------|-------------|------|
|
| 280 |
+
| Primary Code | Main technical correctness code | `eai_taxonomy.technical_correctness.primary.code` |
|
| 281 |
+
| Primary Label | Main technical correctness label | `eai_taxonomy.technical_correctness.primary.label` |
|
| 282 |
+
| Secondary Code | Alternative technical correctness code | `eai_taxonomy.technical_correctness.secondary.code` |
|
| 283 |
+
| Secondary Label | Alternative technical correctness label | `eai_taxonomy.technical_correctness.secondary.label` |
|
| 284 |
+
|
| 285 |
+
**Possible Values:**
|
| 286 |
+
| Code | Label | Description |
|
| 287 |
+
|------|-------|-------------|
|
| 288 |
+
| `-1` | Abstain | Unable to determine |
|
| 289 |
+
| `1` | Technically Flawed | Significant errors undermining content validity |
|
| 290 |
+
| `2` | Partially Correct | Some correctness but contains flaws, omissions, or errors |
|
| 291 |
+
| `3` | Mostly Correct | Technical correctness with minor flaws or incomplete explanations |
|
| 292 |
+
| `4` | Highly Correct | High technical correctness with precise definitions and clear explanations |
|
| 293 |
+
| `5` | Exceptionally Correct | Exceptional technical correctness with formal proofs and flawless content |
|
| 294 |
+
| `6` | Not Applicable/Indeterminate | No technical content or insufficient context |
|
| 295 |
+
|
| 296 |
+
### Education Level
|
| 297 |
+
Assesses the appropriate educational background required to comprehend the content:
|
| 298 |
+
|
| 299 |
+
| Component | Description | Path |
|
| 300 |
+
|-----------|-------------|------|
|
| 301 |
+
| Primary Code | Main education level code | `eai_taxonomy.education_level.primary.code` |
|
| 302 |
+
| Primary Label | Main education level label | `eai_taxonomy.education_level.primary.label` |
|
| 303 |
+
| Secondary Code | Alternative education level code | `eai_taxonomy.education_level.secondary.code` |
|
| 304 |
+
| Secondary Label | Alternative education level label | `eai_taxonomy.education_level.secondary.label` |
|
| 305 |
+
|
| 306 |
+
**Possible Values:**
|
| 307 |
+
| Code | Label | Description |
|
| 308 |
+
|------|-------|-------------|
|
| 309 |
+
| `-1` | Abstain | Unable to determine |
|
| 310 |
+
| `1` | General Audience | Accessible to anyone with basic literacy; simple terms |
|
| 311 |
+
| `2` | High School Level | Requires high school education; specialized terminology explained for non-experts |
|
| 312 |
+
| `3` | Undergraduate Level | Requires college education; uses specialized terminology and assumes background knowledge |
|
| 313 |
+
| `4` | Graduate/Expert Level | Requires graduate education or domain expertise; assumes deep background knowledge |
|
| 314 |
+
| `5` | Indeterminate | Insufficient content to judge educational level |
|
| 315 |
+
|
| 316 |
+
</details>
|
| 317 |
+
|
| 318 |
+
<details>
|
| 319 |
+
<summary><strong>Metadata</strong></summary>
|
| 320 |
+
|
| 321 |
+
## Metadata Structure
|
| 322 |
+
|
| 323 |
+
The `metadata` field contains a nested structure with web archive information:
|
| 324 |
+
|
| 325 |
+
| Field | Type | Description | Path |
|
| 326 |
+
|-------|------|-------------|------|
|
| 327 |
+
| **URL Information** | | | |
|
| 328 |
+
| URL | `String` | Original URL of the document | `metadata.url` |
|
| 329 |
+
| Source Domain | `String` | Domain name of the source | `metadata.source_domain` |
|
| 330 |
+
| Snapshot ID | `String` | Identifier for the web archive snapshot | `metadata.snapshot_id` |
|
| 331 |
+
| **WARC Metadata** | | WARC (Web ARChive) format metadata | |
|
| 332 |
+
| Content Length | `String` | Size of the content | `metadata.warc_metadata.Content-Length` |
|
| 333 |
+
| Content Type | `String` | MIME type of the content | `metadata.warc_metadata.Content-Type` |
|
| 334 |
+
| Block Digest | `String` | Checksum of the WARC block | `metadata.warc_metadata.WARC-Block-Digest` |
|
| 335 |
+
| Concurrent To | `String` | Related WARC records | `metadata.warc_metadata.WARC-Concurrent-To` |
|
| 336 |
+
| Date | `String` | Timestamp of the crawl | `metadata.warc_metadata.WARC-Date` |
|
| 337 |
+
| IP Address | `String` | Source server IP address | `metadata.warc_metadata.WARC-IP-Address` |
|
| 338 |
+
| Payload Type | `String` | Identified content type | `metadata.warc_metadata.WARC-Identified-Payload-Type` |
|
| 339 |
+
| Payload Digest | `String` | Checksum of the payload | `metadata.warc_metadata.WARC-Payload-Digest` |
|
| 340 |
+
| Record ID | `String` | Unique WARC record identifier | `metadata.warc_metadata.WARC-Record-ID` |
|
| 341 |
+
| Target URI | `String` | Original target URL | `metadata.warc_metadata.WARC-Target-URI` |
|
| 342 |
+
| Truncated | `String` | Truncation status | `metadata.warc_metadata.WARC-Truncated` |
|
| 343 |
+
| Type | `String` | WARC record type | `metadata.warc_metadata.WARC-Type` |
|
| 344 |
+
| Warcinfo ID | `String` | Associated warcinfo record | `metadata.warc_metadata.WARC-Warcinfo-ID` |
|
| 345 |
+
| **Additional Info** | | | |
|
| 346 |
+
| WARC Info | `String` | Additional WARC information | `metadata.warc_info` |
|
| 347 |
+
|
| 348 |
+
</details>
|
| 349 |
+
|
| 350 |
+
<details>
|
| 351 |
+
<summary><strong>Quality Signals</strong></summary>
|
| 352 |
+
|
| 353 |
+
The dataset includes two comprehensive quality assessment frameworks:
|
| 354 |
+
|
| 355 |
+
## Red Pajama v2 Quality Metrics
|
| 356 |
+
|
| 357 |
+
Text quality indicators derived from the Red Pajama v2 filtering pipeline:
|
| 358 |
+
|
| 359 |
+
### Content Structure Metrics
|
| 360 |
+
| Metric | Description | Path |
|
| 361 |
+
|--------|-------------|------|
|
| 362 |
+
| Original Length | Original document length | `quality_signals.red_pajama_v2.ccnet_original_length` |
|
| 363 |
+
| Original Lines | Number of lines in original document | `quality_signals.red_pajama_v2.ccnet_original_nlines` |
|
| 364 |
+
| Sentence Count | Total sentence count | `quality_signals.red_pajama_v2.rps_doc_num_sentences` |
|
| 365 |
+
| Word Count | Total word count | `quality_signals.red_pajama_v2.rps_doc_word_count` |
|
| 366 |
+
| Mean Word Length | Average word length | `quality_signals.red_pajama_v2.rps_doc_mean_word_length` |
|
| 367 |
+
|
| 368 |
+
### Language Quality Metrics
|
| 369 |
+
| Metric | Description | Path |
|
| 370 |
+
|--------|-------------|------|
|
| 371 |
+
| Stop Word Fraction | Proportion of stop words | `quality_signals.red_pajama_v2.rps_doc_stop_word_fraction` |
|
| 372 |
+
| Unique Words Fraction | Fraction of unique words | `quality_signals.red_pajama_v2.rps_doc_frac_unique_words` |
|
| 373 |
+
| All Caps Words | Fraction of words in all capitals | `quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words` |
|
| 374 |
+
| Non-Alphabetic Words | Fraction of non-alphabetic words | `quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words` |
|
| 375 |
+
| Unigram Entropy | Entropy measure of word distribution | `quality_signals.red_pajama_v2.rps_doc_unigram_entropy` |
|
| 376 |
+
|
| 377 |
+
### Content Pattern Analysis
|
| 378 |
+
| Metric | Description | Path |
|
| 379 |
+
|--------|-------------|------|
|
| 380 |
+
| Curly Bracket Density | Curly bracket density (code indicator) | `quality_signals.red_pajama_v2.rps_doc_curly_bracket` |
|
| 381 |
+
| Symbol-to-Word Ratio | Symbol-to-word ratio | `quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio` |
|
| 382 |
+
| Ellipsis Line Endings | Lines ending with ellipsis | `quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis` |
|
| 383 |
+
| Lorem Ipsum Detection | Lorem ipsum text detection | `quality_signals.red_pajama_v2.rps_doc_lorem_ipsum` |
|
| 384 |
+
| Offensive Content | Potentially offensive content detection | `quality_signals.red_pajama_v2.rps_doc_ldnoobw_words` |
|
| 385 |
+
| UT1 Blacklist | UT1 blacklist filtering score | `quality_signals.red_pajama_v2.rps_doc_ut1_blacklist` |
|
| 386 |
+
|
| 387 |
+
### Duplication Detection
|
| 388 |
+
| Metric | Description | Path |
|
| 389 |
+
|--------|-------------|------|
|
| 390 |
+
| 5-gram Duplication | Character-level duplication for 5-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams` |
|
| 391 |
+
| 6-gram Duplication | Character-level duplication for 6-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams` |
|
| 392 |
+
| 7-gram Duplication | Character-level duplication for 7-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams` |
|
| 393 |
+
| 8-gram Duplication | Character-level duplication for 8-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams` |
|
| 394 |
+
| 9-gram Duplication | Character-level duplication for 9-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams` |
|
| 395 |
+
| 10-gram Duplication | Character-level duplication for 10-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams` |
|
| 396 |
+
| Top 2-gram Coverage | Most frequent 2-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram` |
|
| 397 |
+
| Top 3-gram Coverage | Most frequent 3-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram` |
|
| 398 |
+
| Top 4-gram Coverage | Most frequent 4-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram` |
|
| 399 |
+
|
| 400 |
+
### Domain Importance Scores
|
| 401 |
+
| Metric | Description | Path |
|
| 402 |
+
|--------|-------------|------|
|
| 403 |
+
| Books Importance | Similarity to book content | `quality_signals.red_pajama_v2.rps_doc_books_importance` |
|
| 404 |
+
| Books Importance (Length Corrected) | Length-corrected books similarity | `quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction` |
|
| 405 |
+
| OpenWebText Importance | Similarity to OpenWebText | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance` |
|
| 406 |
+
| OpenWebText Importance (Length Corrected) | Length-corrected OpenWebText similarity | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction` |
|
| 407 |
+
| Wikipedia Importance | Similarity to Wikipedia | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance` |
|
| 408 |
+
| Wikipedia Importance (Length Corrected) | Length-corrected Wikipedia similarity | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction` |
|
| 409 |
+
|
| 410 |
+
## FastText Classification Scores
|
| 411 |
+
|
| 412 |
+
Domain and content type classification probabilities:
|
| 413 |
+
|
| 414 |
+
| Metric | Description | Path |
|
| 415 |
+
|--------|-------------|------|
|
| 416 |
+
| DCLM Score | DataComp-LM classifier score | `quality_signals.fasttext.dclm` |
|
| 417 |
+
| English Confidence | English language confidence | `quality_signals.fasttext.english` |
|
| 418 |
+
| Educational Content | Educational content approximation | `quality_signals.fasttext.fineweb_edu_approx` |
|
| 419 |
+
| General Math | General mathematics content | `quality_signals.fasttext.eai_general_math` |
|
| 420 |
+
| Web Math | OWM Web-based mathematics content | `quality_signals.fasttext.eai_open_web_math` |
|
| 421 |
+
| Code Content | Code content detection | `quality_signals.fasttext.eai_web_code` |
|
| 422 |
+
|
| 423 |
+
</details>
|
| 424 |
+
|
| 425 |
+
## How to Load the Dataset
|
| 426 |
+
|
| 427 |
+
This section provides examples of how to load the `EssentialAI/eai-taxonomy-code-w-dclm` dataset using different Python libraries and frameworks.
|
| 428 |
+
|
| 429 |
+
### Using Hugging Face Datasets (Standard Method)
|
| 430 |
+
|
| 431 |
+
The simplest way to load the dataset is using the Hugging Face `datasets` library:
|
| 432 |
+
|
| 433 |
+
```python
|
| 434 |
+
from datasets import load_dataset
|
| 435 |
+
|
| 436 |
+
# Load the entire dataset
|
| 437 |
+
dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm")
|
| 438 |
+
|
| 439 |
+
# View dataset structure
|
| 440 |
+
print(dataset)
|
| 441 |
+
print(f"Number of examples: {len(dataset['train'])}")
|
| 442 |
+
```
|
| 443 |
+
|
| 444 |
+
You can also load the dataset in streaming mode to avoid downloading the entire dataset at once:
|
| 445 |
+
|
| 446 |
+
```python
|
| 447 |
+
from datasets import load_dataset
|
| 448 |
+
|
| 449 |
+
# Load in streaming mode
|
| 450 |
+
dataset = load_dataset("EssentialAI/eai-taxonomy-code-w-dclm", streaming=True)
|
| 451 |
+
data_stream = dataset["train"]
|
| 452 |
+
|
| 453 |
+
# Iterate through examples
|
| 454 |
+
for example in data_stream.take(5):
|
| 455 |
+
print(example)
|
| 456 |
+
```
|
| 457 |
+
|
| 458 |
+
### Using PySpark
|
| 459 |
+
|
| 460 |
+
For large-scale distributed processing, you can load the dataset using PySpark with the `pyspark_huggingface` library:
|
| 461 |
+
|
| 462 |
+
```python
|
| 463 |
+
# First install the required library:
|
| 464 |
+
# pip install pyspark_huggingface
|
| 465 |
+
|
| 466 |
+
import pyspark_huggingface
|
| 467 |
+
from pyspark.sql import SparkSession
|
| 468 |
+
|
| 469 |
+
# Initialize Spark session
|
| 470 |
+
spark = SparkSession.builder.appName("EAI-Taxonomy-Code-w-DCLM").getOrCreate()
|
| 471 |
+
|
| 472 |
+
# Load the dataset using the "huggingface" data source
|
| 473 |
+
df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-code-w-dclm")
|
| 474 |
+
|
| 475 |
+
# Basic dataset exploration
|
| 476 |
+
print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
|
| 477 |
+
df.show(10)
|
| 478 |
+
df.printSchema()
|
| 479 |
+
|
| 480 |
+
# Load only specific columns for efficiency
|
| 481 |
+
df_subset = (
|
| 482 |
+
spark.read.format("huggingface")
|
| 483 |
+
.option("columns", '["column1", "column2"]') # Replace with actual column names
|
| 484 |
+
.load("EssentialAI/eai-taxonomy-code-w-dclm")
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# Run SQL queries on the dataset
|
| 488 |
+
df.createOrReplaceTempView("eai_taxonomy_code_w_dclm_dataset")
|
| 489 |
+
result = spark.sql("""
|
| 490 |
+
SELECT COUNT(*) as total_examples
|
| 491 |
+
FROM eai_taxonomy_code_w_dclm_dataset
|
| 492 |
+
""")
|
| 493 |
+
result.show()
|
| 494 |
+
```
|
| 495 |
+
|
| 496 |
+
### Using Daft
|
| 497 |
+
|
| 498 |
+
Daft provides a modern DataFrame library optimized for machine learning workloads. You can load the dataset directly from Hugging Face:
|
| 499 |
+
|
| 500 |
+
```python
|
| 501 |
+
import daft
|
| 502 |
+
|
| 503 |
+
# Load the entire dataset
|
| 504 |
+
df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm")
|
| 505 |
+
|
| 506 |
+
# Basic exploration
|
| 507 |
+
print("Dataset schema:")
|
| 508 |
+
df.schema()
|
| 509 |
+
|
| 510 |
+
print("First 5 rows:")
|
| 511 |
+
df.show(5)
|
| 512 |
+
```
|
| 513 |
+
|
| 514 |
+
If you need to access private datasets or use authentication:
|
| 515 |
+
|
| 516 |
+
```python
|
| 517 |
+
import daft
|
| 518 |
+
from daft.io import IOConfig, HTTPConfig
|
| 519 |
+
|
| 520 |
+
io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
|
| 521 |
+
df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-code-w-dclm", io_config=io_config)
|
| 522 |
+
```
|
| 523 |
+
|
| 524 |
+
### Installation Requirements
|
| 525 |
+
|
| 526 |
+
Make sure you have the required libraries installed:
|
| 527 |
+
|
| 528 |
+
```bash
|
| 529 |
+
# For Hugging Face datasets
|
| 530 |
+
pip install datasets
|
| 531 |
+
|
| 532 |
+
# For PySpark with Hugging Face integration
|
| 533 |
+
pip install pyspark_huggingface
|
| 534 |
+
|
| 535 |
+
# For Daft
|
| 536 |
+
pip install daft
|
| 537 |
+
```
|
| 538 |
+
|
| 539 |
+
## 📝 Citation
|
| 540 |
+
|
| 541 |
+
```bibtex
|
| 542 |
+
[Citation information to be added]
|
| 543 |
+
```
|