|
|
import os |
|
|
import sys |
|
|
import argparse |
|
|
from pathlib import Path |
|
|
from PIL import Image |
|
|
from typing import Any |
|
|
import torch |
|
|
import torchvision.transforms as T |
|
|
from datasets import load_dataset |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
os.environ["GRADIO_TEMP_DIR"] = "./tmp" |
|
|
from jodi_pipeline import JodiPipeline |
|
|
from model.postprocess import ( |
|
|
ImagePostProcessor, LineartPostProcessor, EdgePostProcessor, DepthPostProcessor, |
|
|
NormalPostProcessor, AlbedoPostProcessor, SegADE20KPostProcessor, OpenposePostProcessor, |
|
|
) |
|
|
from transformers import ( |
|
|
Qwen2VLForConditionalGeneration, |
|
|
Qwen2_5_VLForConditionalGeneration, |
|
|
Qwen3VLForConditionalGeneration, |
|
|
Qwen3VLMoeForConditionalGeneration |
|
|
) |
|
|
from transformers import AutoProcessor, Trainer |
|
|
from pathlib import Path |
|
|
import itertools |
|
|
import ast |
|
|
import re |
|
|
from PIL import Image |
|
|
import json |
|
|
import re |
|
|
|
|
|
|
|
|
def clean_eval_question(q: str) -> str: |
|
|
""" |
|
|
Clean VQA-style question text for evaluation. |
|
|
- If lettered options (A–Z) exist, keep text up to the last option. |
|
|
- Otherwise, keep text up to the first '?' (inclusive). |
|
|
""" |
|
|
if not isinstance(q, str): |
|
|
q = str(q) |
|
|
|
|
|
|
|
|
q = re.sub(r"<\s*image\s*\d+\s*>", "", q, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
option_pattern = r"(?:\(?[A-Z]\)?[\.\:\-\)]\s)" |
|
|
matches = list(re.finditer(option_pattern, q, flags=re.IGNORECASE)) |
|
|
|
|
|
if matches: |
|
|
|
|
|
last_match = matches[-1] |
|
|
|
|
|
tail = q[last_match.end():] |
|
|
|
|
|
tail_cut = re.split(r"(please\s+answer|choose\s+the|select\s+the|answer\s+directly)", tail, flags=re.IGNORECASE)[0] |
|
|
q = q[:last_match.end()] + tail_cut |
|
|
else: |
|
|
|
|
|
match_qmark = re.search(r"\?", q) |
|
|
if match_qmark: |
|
|
q = q[:match_qmark.end()] |
|
|
else: |
|
|
q = q.split("\n")[0] |
|
|
|
|
|
|
|
|
q = re.sub(r"\n+", " ", q) |
|
|
q = re.sub(r"\s+", " ", q).strip() |
|
|
return q |
|
|
|
|
|
|
|
|
def clean_prompt_question(q: str) -> str: |
|
|
"""Clean VQA-style question text, keeping only the question stem before '?'. """ |
|
|
if not isinstance(q, str): |
|
|
q = str(q) |
|
|
|
|
|
|
|
|
q = re.sub(r"<\s*image\s*\d+\s*>", "", q, flags=re.IGNORECASE) |
|
|
|
|
|
|
|
|
match = re.search(r"^(.*?\?)", q) |
|
|
if match: |
|
|
q = match.group(1) |
|
|
else: |
|
|
|
|
|
q = q.split("\n")[0] |
|
|
|
|
|
|
|
|
q = re.sub(r"\s+", " ", q).strip() |
|
|
return q |
|
|
|
|
|
|
|
|
def dump_image(image, save_root): |
|
|
os.makedirs(save_root, exist_ok=True) |
|
|
save_path = os.path.join(save_root, "input.jpg") |
|
|
image.convert("RGB").save(save_path, format="JPEG", quality=95) |
|
|
return save_path |
|
|
|
|
|
|
|
|
def concatenate_images(image_paths, save_path, images_per_row=None, image_format="png"): |
|
|
""" 将多个图像拼接成一张大图并保存。 |
|
|
Args: image_paths: List[str] 图像路径列表 |
|
|
save_path: 保存路径(包括文件名) images_per_row: 每行图像数量(默认为全部在一行) |
|
|
image_format: 保存格式 |
|
|
""" |
|
|
from PIL import Image |
|
|
import io |
|
|
|
|
|
images = [Image.open(p).convert("RGB") for p in image_paths] |
|
|
|
|
|
if images_per_row is None: |
|
|
images_per_row = len(images) |
|
|
|
|
|
|
|
|
target_size = min(1024, images[0].size[0]) |
|
|
images = [img.resize((target_size, target_size)) for img in images] |
|
|
|
|
|
|
|
|
widths, heights = zip(*(img.size for img in images)) |
|
|
max_width = max(widths) |
|
|
rows = (len(images) + images_per_row - 1) // images_per_row |
|
|
total_height = sum(heights[:images_per_row]) * rows |
|
|
|
|
|
new_im = Image.new("RGB", (max_width * images_per_row, total_height)) |
|
|
y_offset = 0 |
|
|
for i in range(0, len(images), images_per_row): |
|
|
row_imgs = images[i:i + images_per_row] |
|
|
x_offset = 0 |
|
|
for img in row_imgs: |
|
|
new_im.paste(img, (x_offset, y_offset)) |
|
|
x_offset += max_width |
|
|
y_offset += heights[0] |
|
|
|
|
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
|
new_im.save(save_path, format=image_format.upper()) |
|
|
print(f"🧩 Saved merged image → {save_path}") |
|
|
return save_path |
|
|
|
|
|
|
|
|
def build_vqa_message(root, prompt, question): |
|
|
""" |
|
|
Build Qwen3-VL message for multimodal or single-image VQA. |
|
|
Now explicitly tags each modality image before feeding into Qwen3-VL, |
|
|
so that the model can distinguish RGB, edge, depth, normal, etc. |
|
|
""" |
|
|
|
|
|
root_path = Path(root) |
|
|
|
|
|
|
|
|
if root_path.is_file() and root_path.suffix.lower() in [".jpg", ".jpeg", ".png", ".webp"]: |
|
|
image_path = str(root) |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "image", "image": image_path}, |
|
|
{"type": "text", "text": f"Answer the follow question:{question} based on the <image>."}, |
|
|
], |
|
|
} |
|
|
] |
|
|
return messages |
|
|
|
|
|
|
|
|
modality_names = [ |
|
|
"image", |
|
|
"annotation_lineart", |
|
|
"annotation_edge", |
|
|
"annotation_depth", |
|
|
"annotation_normal", |
|
|
"annotation_albedo", |
|
|
"annotation_seg_12colors", |
|
|
|
|
|
] |
|
|
|
|
|
|
|
|
available = [] |
|
|
for name in modality_names: |
|
|
for ext in [".png", ".jpg", ".jpeg"]: |
|
|
path = Path(root) / f"{name}{ext}" |
|
|
if path.exists(): |
|
|
available.append((name, str(path))) |
|
|
break |
|
|
|
|
|
|
|
|
readable_map = { |
|
|
"image": "RGB image", |
|
|
"annotation_lineart": "line drawing", |
|
|
"annotation_edge": "edge map", |
|
|
"annotation_depth": "depth map", |
|
|
"annotation_normal": "normal map", |
|
|
"annotation_albedo": "albedo map", |
|
|
"annotation_seg_12colors": "segmentation map", |
|
|
|
|
|
} |
|
|
|
|
|
present_modalities = [readable_map[n] for n, _ in available] |
|
|
|
|
|
text_prompt = ( |
|
|
f"Answer the following question based on multiple visual modalities of the same scene, including: {', '.join(present_modalities)}. " |
|
|
f"The following caption describes the image in detail: '{prompt}'. " |
|
|
f"Question:{question}" |
|
|
) |
|
|
|
|
|
|
|
|
content = [] |
|
|
print(f'available:{available}') |
|
|
for name, path in available: |
|
|
readable = readable_map.get(name, "visual input") |
|
|
|
|
|
content.append({"type": "text", "text": f"This is the {readable}."}) |
|
|
content.append({"type": "image", "image": path}) |
|
|
|
|
|
|
|
|
content.append({"type": "text", "text": text_prompt}) |
|
|
|
|
|
messages = [{"role": "user", "content": content}] |
|
|
return messages |
|
|
|
|
|
|
|
|
def build_multimodal_message(root, question, coarse_caption="a generic scene", feedback=""): |
|
|
""" |
|
|
Build Qwen3-VL message for multi-modal caption refinement. |
|
|
Explicitly binds each image to its modality name (RGB, edge, depth, etc.) |
|
|
so Qwen3-VL can reason over them correctly and refine the caption faithfully. |
|
|
""" |
|
|
|
|
|
modality_names = [ |
|
|
"image", |
|
|
"annotation_lineart", |
|
|
"annotation_edge", |
|
|
"annotation_depth", |
|
|
"annotation_normal", |
|
|
"annotation_albedo", |
|
|
"annotation_seg_12colors", |
|
|
|
|
|
] |
|
|
|
|
|
|
|
|
available = [] |
|
|
for name in modality_names: |
|
|
for ext in [".png", ".jpg", ".jpeg"]: |
|
|
path = Path(root) / f"{name}{ext}" |
|
|
if path.exists(): |
|
|
available.append((name, str(path))) |
|
|
break |
|
|
|
|
|
|
|
|
readable_map = { |
|
|
"image": "RGB image", |
|
|
"annotation_lineart": "line drawing", |
|
|
"annotation_edge": "edge map", |
|
|
"annotation_depth": "depth map", |
|
|
"annotation_normal": "normal map", |
|
|
"annotation_albedo": "albedo map", |
|
|
"annotation_seg_12colors": "segmentation map", |
|
|
|
|
|
} |
|
|
|
|
|
present_modalities = [readable_map[n] for n, _ in available] |
|
|
|
|
|
|
|
|
text_prompt = ( |
|
|
f"You are given multiple complementary visual modalities of the same scene, including: {', '.join(present_modalities)}. " |
|
|
f"Use all available modalities jointly to reason about the same scene rather than describing them separately. " |
|
|
f"Generate an enhanced visual description that focuses on the aspects most relevant to answering the following question: '{question}'. " |
|
|
f"Your task is to refine the description of the scene based on all visual modalities so that it highlights visual cues " |
|
|
f"that are crucial for accurately addressing the question, such as object appearance, count, position, or relation, " |
|
|
f"while maintaining faithfulness to the original visual content. " |
|
|
f"Do not include any additional commentary or evaluations. " |
|
|
f"Do NOT introduce any new objects, background environments, emotional tones, or storytelling context. " |
|
|
f"Focus on describing the visual properties, including: " |
|
|
f"(1) object category and identity, (2) object attributes such as color, shape, size, and texture, " |
|
|
f"(3) spatial or relational positioning between objects if present, (4) object part–whole structure or state, and (5) object count or quantity. " |
|
|
f"Exclude any stylistic, environmental, emotional, or narrative information. " |
|
|
f"Consider the following feedback when refining your description: '{feedback}'. " |
|
|
f"Describe the scene in an objective and concise tone, emphasizing the details that help answer the question: '{question}'. " |
|
|
f"Coarse caption: '{coarse_caption}' " |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
content = [] |
|
|
for name, path in available: |
|
|
readable = readable_map.get(name, "visual input") |
|
|
content.append({ |
|
|
"type": "text", |
|
|
"text": f"This is the {readable}, which provides {get_modality_description(name)}." |
|
|
}) |
|
|
content.append({"type": "image", "image": path}) |
|
|
|
|
|
|
|
|
content.append({"type": "text", "text": text_prompt}) |
|
|
|
|
|
messages = [{"role": "user", "content": content}] |
|
|
return messages |
|
|
|
|
|
|
|
|
def get_modality_description(name: str) -> str: |
|
|
"""为每个模态生成一句说明,用于提示模型理解模态功能""" |
|
|
desc_map = { |
|
|
"image": "the main visual appearance of the scene, including color, texture, and lighting", |
|
|
"annotation_lineart": "structural outlines, object contours, and fine geometry", |
|
|
"annotation_edge": "strong boundaries and contrast edges between objects", |
|
|
"annotation_depth": "distance and perspective information for spatial understanding", |
|
|
"annotation_normal": "surface orientation and geometric curvature cues", |
|
|
"annotation_albedo": "pure surface color without lighting or shading effects", |
|
|
"annotation_seg_12colors": "semantic regions and object categories", |
|
|
"annotation_openpose": "human body keypoints, joints, and orientation", |
|
|
} |
|
|
return desc_map.get(name, "complementary visual evidence") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_parser(): |
|
|
parser = argparse.ArgumentParser(description="Run JODI inference without Gradio UI.") |
|
|
parser.add_argument("--text_model_path", type=str, default='Qwen/Qwen3-VL-8B-Instruct', |
|
|
help="Path to model checkpoint.") |
|
|
parser.add_argument("--config", type=str, default="./configs/inference.yaml", help="Path to config file.") |
|
|
parser.add_argument("--model_path", type=str, default='hf://VIPL-GENUN/Jodi/Jodi.pth', |
|
|
help="Path to model checkpoint.") |
|
|
parser.add_argument("--model_name_or_path", type=str, default='Qwen/Qwen3-VL-8B-Instruct', |
|
|
help="Path to model checkpoint.") |
|
|
parser.add_argument("--data_path", type=str, default="/home/efs/mjw/mjw/dataset/dataset/realworldqa/images", |
|
|
help="Prompt text for generation.") |
|
|
parser.add_argument("--json", type=str, default="/home/efs/mjw/mjw/dataset/dataset/realworldqa/annotations.json", |
|
|
help="Optional negative prompt.") |
|
|
parser.add_argument("--temp_dir", type=str, default="/home/efs/mjw/mjw/dataset/dataset/tmp", |
|
|
help="Prompt text for generation.") |
|
|
parser.add_argument("--negative_prompt", type=str, default="", help="Optional negative prompt.") |
|
|
parser.add_argument("--question", type=str, default="how many cars in this image?", |
|
|
help="Optional negative prompt.") |
|
|
parser.add_argument("--steps", type=int, default=20, help="Number of inference steps.") |
|
|
parser.add_argument("--iters", type=int, default=10, help="Number of inference steps.") |
|
|
parser.add_argument("--guidance_scale", type=float, default=4.5) |
|
|
parser.add_argument("--seed", type=int, default=42) |
|
|
parser.add_argument("--output_dir", type=str, default="./vqa_realworld_outputs", help="Directory to save results.") |
|
|
return parser |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def vqa_i2t(model, processor, image_path, question, vqa_id, max_length=300): |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image_path, |
|
|
}, |
|
|
{"type": "text", "text": f"Answer the follow question:{question} based on the <image>."}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
print(messages) |
|
|
|
|
|
inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt" |
|
|
) |
|
|
inputs = inputs.to(model.device) |
|
|
|
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
generated_ids_trimmed = [ |
|
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
|
] |
|
|
output_text = processor.batch_decode( |
|
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
|
) |
|
|
print(output_text) |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / str(vqa_id) |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
caption_path = Path(save_dir) / f"caption.txt" |
|
|
with open(caption_path, "w", encoding="utf-8") as f: |
|
|
f.write(output_text[0].strip()) |
|
|
|
|
|
return output_text[0] |
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def init_i2t(model, processor, image_path, iter_num, vqa_id, max_length=300): |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image_path, |
|
|
}, |
|
|
{"type": "text", "text": f"Describe this image."}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, return_dict=True, return_tensors="pt" |
|
|
) |
|
|
inputs = inputs.to(model.device) |
|
|
|
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
generated_ids_trimmed = [ |
|
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
|
] |
|
|
output_text = processor.batch_decode( |
|
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
|
) |
|
|
print(output_text) |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / vqa_id / f"iteration_{iter_num}" |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
caption_path = Path(save_dir) / f"caption.txt" |
|
|
with open(caption_path, "w", encoding="utf-8") as f: |
|
|
f.write(output_text[0].strip()) |
|
|
|
|
|
return output_text[0] |
|
|
|
|
|
@torch.inference_mode() |
|
|
def evaluate_consistency(image_path, model, processor, question, answer, max_length=256): |
|
|
|
|
|
question = clean_eval_question(question) |
|
|
eval_prompt = f""" |
|
|
You are a VQA answer evaluator. |
|
|
Given an image, a question, and a proposed answer, |
|
|
score how correct the answer is according to the image evidence. |
|
|
Then provide one short feedback sentence suggesting what kind of visual information related to {question} or reasoning should be improved |
|
|
to make the answer more accurate or grounded in the image. |
|
|
Return JSON strictly: |
|
|
{{"AnswerScore": <float 0-1>, "Feedback": "<short suggestion>"}} |
|
|
|
|
|
Question: "{question}" |
|
|
Answer: "{answer}" |
|
|
<image> |
|
|
""" |
|
|
|
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{"type": "image", "image": image_path}, |
|
|
{"type": "text", "text": eval_prompt}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt" |
|
|
).to(model.device) |
|
|
|
|
|
out_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
out_trim = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)] |
|
|
text = processor.batch_decode(out_trim, skip_special_tokens=True)[0] |
|
|
|
|
|
|
|
|
try: |
|
|
data = json.loads(re.search(r"\{.*\}", text, re.S).group(0)) |
|
|
score = float(data.get("AnswerScore", 0)) |
|
|
feedback = data.get("Feedback", "") |
|
|
except Exception: |
|
|
score, feedback = 0.0, text.strip() |
|
|
|
|
|
print(f"🧮 [AnswerScore] {score:.3f} | Feedback: {feedback}") |
|
|
return score, feedback |
|
|
|
|
|
@torch.inference_mode() |
|
|
def evaluate_multimodal_consistency(root, model, processor, question, answer, max_length=256): |
|
|
""" |
|
|
Evaluate VQA answer correctness using all available modalities (not just RGB). |
|
|
This reduces model bias and improves visual grounding reliability. |
|
|
""" |
|
|
|
|
|
|
|
|
modality_names = [ |
|
|
"image", "annotation_lineart", "annotation_edge", |
|
|
"annotation_depth", "annotation_normal", "annotation_albedo", |
|
|
"annotation_seg_12colors", "annotation_openpose" |
|
|
] |
|
|
|
|
|
available = [] |
|
|
for name in modality_names: |
|
|
for ext in [".png", ".jpg", ".jpeg"]: |
|
|
path = Path(root) / f"{name}{ext}" |
|
|
if path.exists(): |
|
|
available.append((name, str(path))) |
|
|
break |
|
|
|
|
|
|
|
|
readable_map = { |
|
|
"image": "RGB image", |
|
|
"annotation_lineart": "line drawing", |
|
|
"annotation_edge": "edge map", |
|
|
"annotation_depth": "depth map", |
|
|
"annotation_normal": "normal map", |
|
|
"annotation_albedo": "albedo map", |
|
|
"annotation_seg_12colors": "segmentation map", |
|
|
"annotation_openpose": "human pose map", |
|
|
} |
|
|
|
|
|
present_modalities = [readable_map[n] for n, _ in available] |
|
|
|
|
|
|
|
|
eval_prompt = f""" |
|
|
You are a multimodal visual reasoning evaluator. |
|
|
|
|
|
You are given multiple complementary visual modalities of the same scene, including: {', '.join(present_modalities)}. |
|
|
Your task is to judge **how correct and visually grounded** the given answer is for the question, |
|
|
based purely on visual evidence from all modalities. |
|
|
|
|
|
Follow this process: |
|
|
1. Identify the key visual concepts mentioned in the question (e.g., objects, counts, relations, colors). |
|
|
2. Check whether these visual concepts are **clearly supported** or **contradicted** by the modalities. |
|
|
3. If the question is multiple-choice (options A, B, C...), identify which one best matches the evidence. |
|
|
4. Otherwise, directly evaluate how accurate the free-form answer is. |
|
|
5. Penalize any parts that contradict the image, or ignore modalities. |
|
|
|
|
|
Return JSON strictly: |
|
|
{{ |
|
|
"AnswerScore": <float between 0 and 1>, |
|
|
"Feedback": "<short and specific suggestion mentioning what aspect (e.g., object count, relation, visibility) could be improved>" |
|
|
}} |
|
|
|
|
|
Question: "{question}" |
|
|
Answer: "{answer}" |
|
|
""" |
|
|
|
|
|
|
|
|
content = [] |
|
|
for name, path in available: |
|
|
readable = readable_map.get(name, "visual input") |
|
|
content.append({"type": "text", "text": f"This is the {readable}."}) |
|
|
content.append({"type": "image", "image": path}) |
|
|
content.append({"type": "text", "text": eval_prompt}) |
|
|
|
|
|
messages = [{"role": "user", "content": content}] |
|
|
|
|
|
|
|
|
inputs = processor.apply_chat_template( |
|
|
messages, tokenize=True, add_generation_prompt=True, |
|
|
return_dict=True, return_tensors="pt" |
|
|
).to(model.device) |
|
|
|
|
|
out_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
out_trim = [o[len(i):] for i, o in zip(inputs.input_ids, out_ids)] |
|
|
text = processor.batch_decode(out_trim, skip_special_tokens=True)[0] |
|
|
|
|
|
|
|
|
try: |
|
|
data = json.loads(re.search(r"\{.*\}", text, re.S).group(0)) |
|
|
score = float(data.get("AnswerScore", 0)) |
|
|
feedback = data.get("Feedback", "") |
|
|
except Exception: |
|
|
score, feedback = 0.0, text.strip() |
|
|
|
|
|
print(f"🧮 [AnswerScore] {score:.3f} | Feedback: {feedback}") |
|
|
return score, feedback |
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def text_refine(root, model, processor, prompt, question, feedback, iter_num, vqa_id, max_length=300): |
|
|
question = clean_prompt_question(question) |
|
|
messages = build_multimodal_message(root, question, prompt, feedback) |
|
|
inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt" |
|
|
) |
|
|
inputs = inputs.to(model.device) |
|
|
|
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
generated_ids_trimmed = [ |
|
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
|
] |
|
|
output_text = processor.batch_decode( |
|
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
|
) |
|
|
print(output_text) |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / vqa_id / f"iteration_{iter_num}" |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
caption_path = Path(save_dir) / f"caption.txt" |
|
|
with open(caption_path, "w", encoding="utf-8") as f: |
|
|
f.write(output_text[0].strip()) |
|
|
return output_text[0] |
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def vqa(root, model, processor, prompt, question, vqa_id, step, max_length=300): |
|
|
messages = build_vqa_message(root, prompt, question) |
|
|
print(messages) |
|
|
inputs = processor.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_dict=True, |
|
|
return_tensors="pt" |
|
|
) |
|
|
inputs = inputs.to(model.device) |
|
|
generated_ids = model.generate(**inputs, max_new_tokens=max_length) |
|
|
generated_ids_trimmed = [ |
|
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] |
|
|
output_text = processor.batch_decode( |
|
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
|
) |
|
|
print(output_text) |
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / vqa_id / f'iteration_{step}' / 'vqa_answer' |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
caption_path = Path(save_dir) / f"caption.txt" |
|
|
with open(caption_path, "w", encoding="utf-8") as f: |
|
|
f.write(output_text[0].strip()) |
|
|
return output_text[0] |
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
|
def image_refine(prompt, images, role, pipe, iter_num, modality_names, generator, height, width, image_id): |
|
|
|
|
|
outputs = pipe( |
|
|
images=images, |
|
|
role=role, |
|
|
prompt=prompt, |
|
|
negative_prompt=args.negative_prompt, |
|
|
height=height, |
|
|
width=width, |
|
|
num_inference_steps=args.steps, |
|
|
guidance_scale=args.guidance_scale, |
|
|
num_images_per_prompt=1, |
|
|
generator=generator, |
|
|
task='t2i' |
|
|
) |
|
|
|
|
|
|
|
|
results = [post_processors[i](outputs[i]) for i in range(1 + pipe.num_conditions)] |
|
|
results = torch.stack(results, dim=1).reshape(-1, 3, height, width) |
|
|
results = [T.ToPILImage()(res).convert("RGB") for res in results.unbind(0)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / image_id / f"iteration_{iter_num}" |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
for idx, img in enumerate(results): |
|
|
name = modality_names[idx] |
|
|
save_path = save_dir / f"{name}.png" |
|
|
img.save(save_path) |
|
|
print(f"💾 Saved {name} → {save_path}") |
|
|
|
|
|
merged_path = save_dir / f"merged_iteration_{iter_num}.png" |
|
|
concatenate_images([save_dir / f"{name}.png" for name in modality_names], merged_path) |
|
|
print(f"\n✅ All results saved in: {save_dir}\n") |
|
|
return save_dir |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = get_parser().parse_args() |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
print(f"✅ Using device: {device}") |
|
|
|
|
|
processor = AutoProcessor.from_pretrained( |
|
|
args.model_name_or_path, |
|
|
) |
|
|
|
|
|
model = Qwen3VLForConditionalGeneration.from_pretrained( |
|
|
args.text_model_path, |
|
|
attn_implementation="flash_attention_2", |
|
|
dtype=(torch.bfloat16), |
|
|
).to(device) |
|
|
|
|
|
pipe = JodiPipeline(args.config) |
|
|
pipe.from_pretrained(args.model_path) |
|
|
|
|
|
modality_names = [ |
|
|
"image", |
|
|
"annotation_lineart", |
|
|
"annotation_edge", |
|
|
"annotation_depth", |
|
|
"annotation_normal", |
|
|
"annotation_albedo", |
|
|
"annotation_seg_12colors", |
|
|
"annotation_openpose", |
|
|
] |
|
|
|
|
|
|
|
|
post_processors: list[Any] = [ImagePostProcessor()] |
|
|
for condition in pipe.config.conditions: |
|
|
if condition == "lineart": |
|
|
post_processors.append(LineartPostProcessor()) |
|
|
elif condition == "edge": |
|
|
post_processors.append(EdgePostProcessor()) |
|
|
elif condition == "depth": |
|
|
post_processors.append(DepthPostProcessor()) |
|
|
elif condition == "normal": |
|
|
post_processors.append(NormalPostProcessor()) |
|
|
elif condition == "albedo": |
|
|
post_processors.append(AlbedoPostProcessor()) |
|
|
elif condition == "segmentation": |
|
|
post_processors.append(SegADE20KPostProcessor(color_scheme="colors12", only_return_image=True)) |
|
|
elif condition == "openpose": |
|
|
post_processors.append(OpenposePostProcessor()) |
|
|
else: |
|
|
print(f"⚠️ Warning: Unknown condition: {condition}") |
|
|
post_processors.append(ImagePostProcessor()) |
|
|
|
|
|
torch.manual_seed(args.seed) |
|
|
generator = torch.Generator(device=device).manual_seed(args.seed) |
|
|
|
|
|
with open(args.json, "r", encoding="utf-8") as f: |
|
|
annotations = json.load(f) |
|
|
|
|
|
for sample in annotations[15:306]: |
|
|
image_path = os.path.join(args.data_path, sample["image"]) |
|
|
image_id = sample["image"].split('.')[0] |
|
|
image = Image.open(image_path) |
|
|
question = sample["question"] |
|
|
|
|
|
control_images = [image.convert('RGB')] + [None] * pipe.num_conditions |
|
|
|
|
|
role = [1] + [0] * pipe.num_conditions |
|
|
print(role) |
|
|
|
|
|
best_result, best_score = '', 0.0 |
|
|
max_length = 1024 |
|
|
|
|
|
|
|
|
width, height = image.size |
|
|
print(f'ori width:{width}', f'ori height:{height}') |
|
|
|
|
|
prompt = init_i2t(model, processor, image_path, 0, image_id, max_length) |
|
|
result = vqa_i2t(model, processor, image_path, question, 100, max_length) |
|
|
score, feedback = evaluate_consistency(image_path, model, processor, question, result) |
|
|
|
|
|
if score >= best_score: |
|
|
best_result, best_score = result, score |
|
|
|
|
|
for step in range(1, args.iters): |
|
|
save_dir = image_refine(prompt, control_images, role, pipe, step, modality_names, generator, height, width, |
|
|
image_id) |
|
|
max_length += 100 |
|
|
prompt = text_refine(save_dir, model, processor, prompt, question, feedback, step, image_id, max_length) |
|
|
result = vqa(save_dir, model, processor, prompt, question, image_id, step, max_length) |
|
|
score, feedback = evaluate_multimodal_consistency(save_dir, model, processor, question, result) |
|
|
|
|
|
if score >= best_score: |
|
|
best_result, best_score = result, score |
|
|
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
save_dir = Path(args.output_dir) / image_id / f'iteration_best' / 'vqa_answer' |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
caption_path = Path(save_dir) / f"caption.txt" |
|
|
with open(caption_path, "w", encoding="utf-8") as f: |
|
|
f.write(best_result) |
|
|
print(best_result) |
|
|
|
|
|
|