Update README.md
Browse files
README.md
CHANGED
|
@@ -11,6 +11,7 @@ tags:
|
|
| 11 |
- astronomy
|
| 12 |
- super-resolution
|
| 13 |
- computer-vision
|
|
|
|
| 14 |
configs:
|
| 15 |
- config_name: default
|
| 16 |
data_files:
|
|
@@ -20,35 +21,248 @@ configs:
|
|
| 20 |
path: sampled_data/x2/validation_metadata.jsonl
|
| 21 |
---
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
The **STAR (Super-Resolution for Astronomical Star Fields)** dataset is a large-scale benchmark for developing field-level super-resolution models in astronomy. It contains **54,738 flux-consistent image pairs** derived from Hubble Space Telescope (HST) high-resolution observations and physically faithful low-resolution counterparts. The dataset addresses three key challenges in astronomical super-resolution:
|
| 26 |
|
| 27 |
-
|
| 28 |
-
- **Object-Crop Configuration**: Strategically samples patches across diverse celestial regions.
|
| 29 |
-
- **Data Diversity**: Covers dense star clusters, sparse galactic fields, and regions with varying background noise.
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
## Structure
|
| 34 |
-
- **Full Data**:
|
| 35 |
-
- `data/x2/x2.tar.gz` (33GB): Full x2 dataset.
|
| 36 |
-
- `data/x4/x4.tar.gz` (29GB): Full x4 dataset.
|
| 37 |
-
- Unzip to access: `train_hr_patch/`, `train_lr_patch/`, `eval_hr_patch/`, `eval_lr_patch/` (.npy files), and `dataload_filename/` (txt with pairs).
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
## Custom Loading with Split
|
| 47 |
-
To load with split="train":
|
| 48 |
```python
|
|
|
|
| 49 |
from datasets import load_dataset
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
}
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
- astronomy
|
| 12 |
- super-resolution
|
| 13 |
- computer-vision
|
| 14 |
+
- hubble-space-telescope
|
| 15 |
configs:
|
| 16 |
- config_name: default
|
| 17 |
data_files:
|
|
|
|
| 21 |
path: sampled_data/x2/validation_metadata.jsonl
|
| 22 |
---
|
| 23 |
|
| 24 |
+
# STAR Dataset (Super-Resolution for Astronomical Star Fields)
|
| 25 |
|
| 26 |
+
The **STAR** dataset is a large-scale benchmark for developing field-level super-resolution models in astronomy. It contains **54,738 flux-consistent image pairs** derived from Hubble Space Telescope (HST) high-resolution observations and physically faithful low-resolution counterparts.
|
|
|
|
| 27 |
|
| 28 |
+
## π Key Features
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
- **Flux Consistency**: Ensures consistent flux using a flux-preserving data generation pipeline
|
| 31 |
+
- **Object-Crop Configuration**: Strategically samples patches across diverse celestial regions
|
| 32 |
+
- **Data Diversity**: Covers dense star clusters, sparse galactic fields, and regions with varying background noise
|
| 33 |
+
- **Multiple Scales**: Supports both 2x and 4x super-resolution tasks
|
| 34 |
|
| 35 |
+
## π Dataset Structure
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
```
|
| 38 |
+
KUOCHENG/STAR/
|
| 39 |
+
βββ sampled_data/x2/ # Sample dataset (600 pairs)
|
| 40 |
+
β βββ train_hr_patch/ # 500 HR training patches (.npy files)
|
| 41 |
+
β βββ train_lr_patch/ # 500 LR training patches (.npy files)
|
| 42 |
+
β βββ eval_hr_patch/ # 100 HR validation patches (.npy files)
|
| 43 |
+
β βββ eval_lr_patch/ # 100 LR validation patches (.npy files)
|
| 44 |
+
β βββ train_metadata.jsonl # Training pairs metadata
|
| 45 |
+
β βββ validation_metadata.jsonl # Validation pairs metadata
|
| 46 |
+
βββ data/
|
| 47 |
+
βββ x2/x2.tar.gz # Full x2 dataset (33GB)
|
| 48 |
+
βββ x4/x4.tar.gz # Full x4 dataset (29GB)
|
| 49 |
+
```
|
| 50 |
|
| 51 |
+
## π Quick Start
|
| 52 |
+
|
| 53 |
+
### Loading the Dataset
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
from datasets import load_dataset
|
| 57 |
+
import numpy as np
|
| 58 |
+
|
| 59 |
+
# Load metadata
|
| 60 |
+
dataset = load_dataset("KUOCHENG/STAR")
|
| 61 |
+
|
| 62 |
+
# Access a sample
|
| 63 |
+
sample = dataset['train'][0]
|
| 64 |
+
hr_path = sample['hr_path'] # Path to HR .npy file
|
| 65 |
+
lr_path = sample['lr_path'] # Path to LR .npy file
|
| 66 |
+
|
| 67 |
+
# Load actual data
|
| 68 |
+
hr_data = np.load(hr_path, allow_pickle=True).item()
|
| 69 |
+
lr_data = np.load(lr_path, allow_pickle=True).item()
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
### Understanding the Data Format
|
| 73 |
+
|
| 74 |
+
Each `.npy` file contains a dictionary with the following structure:
|
| 75 |
+
|
| 76 |
+
#### High-Resolution (HR) Data
|
| 77 |
+
- **Shape**: `(256, 256)` for all HR patches
|
| 78 |
+
- **Access Keys**:
|
| 79 |
+
```python
|
| 80 |
+
hr_data['image'] # The actual grayscale astronomical image
|
| 81 |
+
hr_data['mask'] # Binary mask (True = valid/accessible pixels)
|
| 82 |
+
hr_data['attn_map'] # Attention map from star finder (detected astronomical sources)
|
| 83 |
+
hr_data['coord'] # Coordinate information (if available)
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
#### Low-Resolution (LR) Data
|
| 87 |
+
- **Shape**: Depends on the super-resolution scale
|
| 88 |
+
- For x2: `(128, 128)`
|
| 89 |
+
- For x4: `(64, 64)`
|
| 90 |
+
- **Access Keys**: Same as HR data
|
| 91 |
+
```python
|
| 92 |
+
lr_data['image'] # Downsampled grayscale image
|
| 93 |
+
lr_data['mask'] # Downsampled mask
|
| 94 |
+
lr_data['attn_map'] # Downsampled attention map
|
| 95 |
+
lr_data['coord'] # Coordinate information
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
### Data Fields Explanation
|
| 99 |
+
|
| 100 |
+
| Field | Description | Type | Usage |
|
| 101 |
+
|-------|-------------|------|-------|
|
| 102 |
+
| `image` | Raw astronomical observation data | `np.ndarray` (float32) | Main input for super-resolution |
|
| 103 |
+
| `mask` | Valid pixel indicator | `np.ndarray` (bool) | Identifies accessible regions (True = valid) |
|
| 104 |
+
| `attn_map` | Star finder output | `np.ndarray` (float32) | Highlights detected astronomical sources (stars, galaxies) |
|
| 105 |
+
| `coord` | Spatial coordinates | `np.ndarray` | Position information for patch alignment |
|
| 106 |
+
|
| 107 |
+
## π» Usage Examples
|
| 108 |
+
|
| 109 |
+
### Basic Training Loop
|
| 110 |
|
|
|
|
|
|
|
| 111 |
```python
|
| 112 |
+
import numpy as np
|
| 113 |
from datasets import load_dataset
|
| 114 |
+
import torch
|
| 115 |
+
from torch.utils.data import DataLoader
|
| 116 |
+
|
| 117 |
+
# Load dataset
|
| 118 |
+
dataset = load_dataset("KUOCHENG/STAR")
|
| 119 |
+
|
| 120 |
+
class STARDataset(torch.utils.data.Dataset):
|
| 121 |
+
def __init__(self, hf_dataset):
|
| 122 |
+
self.dataset = hf_dataset
|
| 123 |
+
|
| 124 |
+
def __len__(self):
|
| 125 |
+
return len(self.dataset)
|
| 126 |
+
|
| 127 |
+
def __getitem__(self, idx):
|
| 128 |
+
sample = self.dataset[idx]
|
| 129 |
+
|
| 130 |
+
# Load .npy files
|
| 131 |
+
hr_data = np.load(sample['hr_path'], allow_pickle=True).item()
|
| 132 |
+
lr_data = np.load(sample['lr_path'], allow_pickle=True).item()
|
| 133 |
+
|
| 134 |
+
# Extract images
|
| 135 |
+
hr_image = hr_data['image'].astype(np.float32)
|
| 136 |
+
lr_image = lr_data['image'].astype(np.float32)
|
| 137 |
+
|
| 138 |
+
# Extract masks for loss computation
|
| 139 |
+
hr_mask = hr_data['mask'].astype(np.float32)
|
| 140 |
+
lr_mask = lr_data['mask'].astype(np.float32)
|
| 141 |
+
|
| 142 |
+
# Convert to tensors
|
| 143 |
+
return {
|
| 144 |
+
'lr_image': torch.from_numpy(lr_image).unsqueeze(0), # Add channel dim
|
| 145 |
+
'hr_image': torch.from_numpy(hr_image).unsqueeze(0),
|
| 146 |
+
'hr_mask': torch.from_numpy(hr_mask).unsqueeze(0),
|
| 147 |
+
'lr_mask': torch.from_numpy(lr_mask).unsqueeze(0),
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
# Create PyTorch dataset and dataloader
|
| 151 |
+
train_dataset = STARDataset(dataset['train'])
|
| 152 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 153 |
+
|
| 154 |
+
# Training loop example
|
| 155 |
+
for batch in train_loader:
|
| 156 |
+
lr_images = batch['lr_image'] # [B, 1, 128, 128] for x2
|
| 157 |
+
hr_images = batch['hr_image'] # [B, 1, 256, 256]
|
| 158 |
+
masks = batch['hr_mask'] # [B, 1, 256, 256]
|
| 159 |
+
|
| 160 |
+
# Your training code here
|
| 161 |
+
# pred = model(lr_images)
|
| 162 |
+
# loss = criterion(pred * masks, hr_images * masks) # Apply mask to focus on valid regions
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
### Visualization
|
| 166 |
+
|
| 167 |
+
```python
|
| 168 |
+
import matplotlib.pyplot as plt
|
| 169 |
+
import numpy as np
|
| 170 |
+
|
| 171 |
+
def visualize_sample(hr_path, lr_path):
|
| 172 |
+
# Load data
|
| 173 |
+
hr_data = np.load(hr_path, allow_pickle=True).item()
|
| 174 |
+
lr_data = np.load(lr_path, allow_pickle=True).item()
|
| 175 |
+
|
| 176 |
+
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
|
| 177 |
+
|
| 178 |
+
# HR visualizations
|
| 179 |
+
axes[0, 0].imshow(hr_data['image'], cmap='gray')
|
| 180 |
+
axes[0, 0].set_title('HR Image (256x256)')
|
| 181 |
+
|
| 182 |
+
axes[0, 1].imshow(hr_data['mask'], cmap='binary')
|
| 183 |
+
axes[0, 1].set_title('HR Mask (Valid Regions)')
|
| 184 |
+
|
| 185 |
+
axes[0, 2].imshow(hr_data['attn_map'], cmap='hot')
|
| 186 |
+
axes[0, 2].set_title('HR Attention Map (Detected Sources)')
|
| 187 |
+
|
| 188 |
+
# LR visualizations
|
| 189 |
+
axes[1, 0].imshow(lr_data['image'], cmap='gray')
|
| 190 |
+
axes[1, 0].set_title(f'LR Image ({lr_data["image"].shape[0]}x{lr_data["image"].shape[1]})')
|
| 191 |
+
|
| 192 |
+
axes[1, 1].imshow(lr_data['mask'], cmap='binary')
|
| 193 |
+
axes[1, 1].set_title('LR Mask')
|
| 194 |
+
|
| 195 |
+
axes[1, 2].imshow(lr_data['attn_map'], cmap='hot')
|
| 196 |
+
axes[1, 2].set_title('LR Attention Map')
|
| 197 |
+
|
| 198 |
+
plt.tight_layout()
|
| 199 |
+
plt.show()
|
| 200 |
+
|
| 201 |
+
# Visualize a sample
|
| 202 |
+
sample = dataset['train'][0]
|
| 203 |
+
visualize_sample(sample['hr_path'], sample['lr_path'])
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
## π File Naming Convention
|
| 207 |
+
|
| 208 |
+
- **HR files**: `*_hr_hr_patch_*.npy`
|
| 209 |
+
- **LR files**: `*_hr_lr_patch_*.npy`
|
| 210 |
+
|
| 211 |
+
Files are paired by replacing `_hr_hr_patch_` with `_hr_lr_patch_` in the filename.
|
| 212 |
+
|
| 213 |
+
## π Full Dataset Access
|
| 214 |
+
|
| 215 |
+
For the complete dataset (54,738 pairs), download the compressed files:
|
| 216 |
+
|
| 217 |
+
```python
|
| 218 |
+
# Manual download and extraction
|
| 219 |
+
import tarfile
|
| 220 |
+
|
| 221 |
+
# Extract x2 dataset
|
| 222 |
+
with tarfile.open('data/x2/x2.tar.gz', 'r:gz') as tar:
|
| 223 |
+
tar.extractall('data/x2/')
|
| 224 |
+
|
| 225 |
+
# The extracted structure will be:
|
| 226 |
+
# data/x2/
|
| 227 |
+
# βββ train_hr_patch/ # ~45,000 HR patches
|
| 228 |
+
# βββ train_lr_patch/ # ~45,000 LR patches
|
| 229 |
+
# βββ eval_hr_patch/ # ~9,000 HR patches
|
| 230 |
+
# βββ eval_lr_patch/ # ~9,000 LR patches
|
| 231 |
+
# βββ dataload_filename/
|
| 232 |
+
# β βββ train_dataloader.txt # Training pairs list
|
| 233 |
+
# β βββ eval_dataloader.txt # Evaluation pairs list
|
| 234 |
+
# βββ psf_hr/, psf_lr/ # Original unpatched data
|
| 235 |
+
```
|
| 236 |
+
|
| 237 |
+
## π― Model Evaluation Metrics
|
| 238 |
+
|
| 239 |
+
When evaluating super-resolution models on STAR, consider:
|
| 240 |
+
|
| 241 |
+
1. **Masked PSNR/SSIM**: Only compute metrics on valid pixels (where mask=True)
|
| 242 |
+
2. **Source Detection F1**: Evaluate if astronomical sources are preserved
|
| 243 |
+
3. **Flux Preservation**: Check if total flux is maintained (important for astronomy, see paper)
|
| 244 |
+
```
|
| 245 |
+
|
| 246 |
+
## π Citation
|
| 247 |
+
|
| 248 |
+
If you use the STAR dataset in your research, please cite:
|
| 249 |
+
|
| 250 |
+
```bibtex
|
| 251 |
+
@article{wu2025star,
|
| 252 |
+
title={STAR: A Benchmark for Astronomical Star Fields Super-Resolution},
|
| 253 |
+
author={Wu, Kuo-Cheng and Zhuang, Guohang and Huang, Jinyang and Zhang, Xiang and Ouyang, Wanli and Lu, Yan},
|
| 254 |
+
journal={arXiv preprint arXiv:2507.16385},
|
| 255 |
+
year={2025},
|
| 256 |
+
url={https://arxiv.org/abs/2507.16385}
|
| 257 |
}
|
| 258 |
+
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
## π License
|
| 262 |
+
|
| 263 |
+
This dataset is released under the MIT License.
|
| 264 |
+
|
| 265 |
+
## π€ Contact
|
| 266 |
+
|
| 267 |
+
For questions or issues, please open an issue on the [dataset repository](https://huggingface.co/datasets/KUOCHENG/STAR/discussions).
|
| 268 |
+
also can see [github](https://github.com/GuoCheng12/STAR)
|