KUOCHENG commited on
Commit
ac9f79b
·
verified ·
1 Parent(s): 24e5668

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -33
README.md CHANGED
@@ -6,38 +6,44 @@ pretty_name: STAR
6
  size_categories:
7
  - 100M<n<1B
8
  ---
9
- # Dataset Card for Dataset Name
10
 
11
- <!-- Provide a quick summary of the dataset. -->
12
 
13
- This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).
14
-
15
-
16
- ### Dataset Description
17
-
18
- <!-- Provide a longer summary of what this dataset is. -->
19
-
20
- ## Uses
21
-
22
- <!-- Address questions around how the dataset is intended to be used. -->
23
-
24
- [More Information Needed]
25
-
26
- ## Dataset Structure
27
-
28
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
29
-
30
- [More Information Needed]
31
-
32
- ### Source Data
33
-
34
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
35
-
36
- #### Data Collection and Processing
37
-
38
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
39
-
40
-
41
- ## Citation [optional]
42
-
43
- <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
6
  size_categories:
7
  - 100M<n<1B
8
  ---
 
9
 
 
10
 
11
+ # STAR Dataset
12
+ The **STAR (Super-Resolution for Astronomical Star Fields)** dataset is a large-scale benchmark for developing field-level super-resolution models in astronomy. It contains **54,738 flux-consistent image pairs** derived from Hubble Space Telescope (HST) high-resolution observations and physically faithful low-resolution counterparts. The dataset addresses three key challenges in astronomical super-resolution:
13
+
14
+ - **Flux Inconsistency**: Ensures consistent flux using a flux-preserving data generation pipeline.
15
+ - **Object-Crop Configuration**: Strategically samples patches across diverse celestial regions.
16
+ - **Data Diversity**: Covers dense star clusters, sparse galactic fields, and regions with varying background noise.
17
+
18
+ The dataset includes x2 and x4 scaling pairs in `.npy` format, suitable for training and evaluating super-resolution models.
19
+
20
+ ## Structure
21
+ - **Full Data**:
22
+ - `data/x2/x2.tar.gz` (33GB): Full x2 dataset.
23
+ - `data/x4/x4.tar.gz` (29GB): Full x4 dataset.
24
+ - Unzip to access: `train_hr_patch/`, `train_lr_patch/`, `eval_hr_patch/`, `eval_lr_patch/` (.npy files), and `dataload_filename/` (txt with pairs).
25
+
26
+ - **Sample Data** (for testing and Croissant, x2 only):
27
+ - `sampled_data/x2/`: Sample .npy pairs (500 train pairs, 100 eval pairs).
28
+ - `train_hr_patch/`, `train_lr_patch/` (500 files each)
29
+ - `eval_hr_patch/`, `eval_lr_patch/` (100 files each)
30
+ - Croissant metadata: `sampled_data/x2/croissant.json`
31
+
32
+ ## Loading Sample
33
+ ```python
34
+ from datasets import Dataset
35
+ import numpy as np
36
+ import glob
37
+
38
+ # Load paired data
39
+ train_hr_files = glob.glob("sampled_data/x2/train_hr_patch/*.npy")
40
+ train_lr_files = [f.replace("hr_patch", "lr_patch") for f in train_hr_files]
41
+ eval_hr_files = glob.glob("sampled_data/x2/eval_hr_patch/*.npy")
42
+ eval_lr_files = [f.replace("hr_patch", "lr_patch") for f in eval_hr_files]
43
+ data_dict = {
44
+ "hr_data": [np.load(f) for f in train_hr_files + eval_hr_files],
45
+ "lr_data": [np.load(f) for f in train_lr_files + eval_lr_files],
46
+ "split": ["train"] * len(train_hr_files) + ["eval"] * len(eval_hr_files)
47
+ }
48
+ dataset = Dataset.from_dict(data_dict)
49
+ print(dataset[0]["hr_data"].shape) # Example access