Datasets:
Tasks:
Image-to-Image
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 6,481 Bytes
4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 ea2829b 4dd2f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
pretty_name: PolarFree
tags:
- computer-vision
- reflection-removal
- polarization
- image-processing
- cvpr2025
license: cc-by-nc-4.0
datasets:
- polarfree
language:
- en
size_categories:
- 10K<n<100K
task_categories:
- image-to-image
---
# PolarFree: Polarization-based Reflection-Free Imaging
## Dataset Overview
PolarFree is a high-quality dataset designed for polarization-based reflection removal tasks, as introduced in the CVPR 2025 paper "PolarFree: Polarization-based Reflection-Free Imaging". The dataset aims to support tasks such as image reflection removal and image enhancement, particularly suitable for training and evaluating polarization-based image reflection removal models.
## Download Dataset
```
huggingface-cli download Mingde/PolaRGB --repo-type dataset --local-dir ./PolaRGB
```
## Dataset Structure
The dataset is organized as follows:
```
dataset/
βββ train/
β βββ easy (or hard)/ # difficulty split
β β βββ input/
β β β βββ 00/ # scene 0
β β β β βββ 000_000.png
β β β β βββ 000_045.png
β β β β βββ 000_090.png
β β β β βββ 000_135.png
β β β β βββ 000_rgb.png
β β β β βββ 001_000.png
β β β β βββ 001_045.png
β β β β βββ 001_090.png
β β β β βββ 001_135.png
β β β β βββ 001_rgb.png
β β β β βββ ...
β β β βββ 01/ # scene 1
β β β β βββ 000_000.png
β β β β βββ 000_045.png
β β β β βββ 000_090.png
β β β β βββ 000_135.png
β β β β βββ 000_rgb.png
β β β β βββ 001_000.png
β β β β βββ 001_045.png
β β β β βββ 001_090.png
β β β β βββ 001_135.png
β β β β βββ 001_rgb.png
β β β β βββ ...
β β β βββ ...
β β βββ gt/
β β β βββ 00/ # scene 0
β β β β βββ 000_000.png
β β β β βββ 000_045.png
β β β β βββ 000_090.png
β β β β βββ 000_135.png
β β β β βββ 000_rgb.png
β β β βββ 01/ # scene 1
β β β β βββ 000_000.png
β β β β βββ 000_045.png
β β β β βββ 000_090.png
β β β β βββ 000_135.png
β β β β βββ 000_rgb.png
β β β βββ ...
β
βββ test/
β βββ input/
β β βββ 00/ # scene 0
β β β βββ 000_000.png
β β β βββ 000_045.png
β β β βββ 000_090.png
β β β βββ 000_135.png
β β β βββ 000_rgb.png
β β β βββ ...
β β βββ 01/ # scene 1
β β β βββ 000_000.png
β β β βββ 000_045.png
β β β βββ 000_090.png
β β β βββ 000_135.png
β β β βββ 000_rgb.png
β β β βββ ...
β β βββ ...
β
β βββ gt/
β β βββ 00/ # scene 0
β β β βββ 000_000.png
β β β βββ 000_045.png
β β β βββ 000_090.png
β β β βββ 000_135.png
β β β βββ 000_rgb.png
β β βββ 01/ # scene 1
β β β βββ 000_000.png
β β β βββ 000_045.png
β β β βββ 000_090.png
β β β βββ 000_135.png
β β β βββ 000_rgb.png
β β βββ ...
βββ ...
```
1. The dataset is divided into **train** and **test** subsets, and both follow a similar directory structure.
2. The **train** subset is further divided into **easy** and **hard** sets, which share the same internal structure. The **test** subset is not split by difficulty, but its structure is identical.
3. Taking the **test** set as an example, it contains two subfolders: **input** and **gt**. The *input* folder stores images with reflections, while the *gt* folder contains the corresponding clean images without reflections. Both folders include the same number of scenes (e.g., 00, 01, 02, ...).
4. In `test/input/00`, there are multiple images named in the format `xxx_yyy.png`. Here, **xxx** denotes the index of the captured sample within scene `00`. **yyy** may be one of {000, 045, 090, 135, rgb}: the first four represent polarization-based images, and `rgb` corresponds to the RGB image of the current scene.
5. In `test/gt/00`, there is a single image named `000_yyy.png`, where '000_rgb.png' serves as the ground truth for all captured samples in the corresponding `input/00` folder.
To train or evaluate a polarization-based reflection removal model, each sample pair can be constructed as follows. For a given scene (e.g., 00), the input consists of five imagesβ000_000.png, 000_045.png, 000_090.png, 000_135.png, and 000_rgb.pngβand the corresponding ground truth is gt/00/000_rgb.png. Similarly:
- input/00/{001_000.png, 001_045.png, 001_090.png, 001_135.png, 001_rgb.png} β gt/00/000_rgb.png
- input/00/{002_000.png, 002_045.png, 002_090.png, 002_135.png, 002_rgb.png} β gt/00/000_rgb.png
and so on for the remaining examples within the same scene.
If you want raw images, please find them at https://huggingface.co/datasets/Mingde/PolaRGB_raw or contact me via [email protected].
## Citation
If you use the PolarFree dataset in your research, please cite the following paper:ξ
```bibtex
@inproceedings{polarfree2025,
title={PolarFree: Polarization-based Reflection-Free Imaging},
author={Yao, Mingde and Wang, Menglu and Tam, King-Man and Li, Lingen and Xue, Tianfan and Gu, Jinwei},
booktitle={CVPR},
year={2025}
}
```
For more information, please visit the project page:
- GitHub Repository: [https://github.com/mdyao/PolarFree](https://github.com/mdyao/PolarFree)
- Paper: [https://arxiv.org/abs/2503.18055](https://arxiv.org/abs/2503.18055)ξ
--- |