File size: 6,481 Bytes
4dd2f93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea2829b
 
 
 
 
 
4dd2f93
 
 
ea2829b
4dd2f93
 
 
 
ea2829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd2f93
ea2829b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd2f93
 
ea2829b
 
 
 
 
 
 
 
 
4dd2f93
ea2829b
4dd2f93
ea2829b
4dd2f93
ea2829b
4dd2f93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
pretty_name: PolarFree
tags:
- computer-vision
- reflection-removal
- polarization
- image-processing
- cvpr2025
license: cc-by-nc-4.0
datasets:
- polarfree
language:
- en
size_categories:
- 10K<n<100K
task_categories:
- image-to-image
---

# PolarFree: Polarization-based Reflection-Free Imaging

## Dataset Overview

PolarFree is a high-quality dataset designed for polarization-based reflection removal tasks, as introduced in the CVPR 2025 paper "PolarFree: Polarization-based Reflection-Free Imaging". The dataset aims to support tasks such as image reflection removal and image enhancement, particularly suitable for training and evaluating polarization-based image reflection removal models.

## Download Dataset
```
huggingface-cli download Mingde/PolaRGB --repo-type dataset --local-dir ./PolaRGB
```

## Dataset Structure

The dataset is organized as follows:

```
dataset/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ easy (or hard)/                     # difficulty split
β”‚   β”‚   β”œβ”€β”€ input/
β”‚   β”‚   β”‚   β”œβ”€β”€ 00/                         # scene 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_rgb.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_135.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_rgb.png
β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   β”œβ”€β”€ 01/                         # scene 1
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_rgb.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_135.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 001_rgb.png
β”‚   β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ gt/
β”‚   β”‚   β”‚   β”œβ”€β”€ 00/                         # scene 0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”‚   └── 000_rgb.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 01/                         # scene 1
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”‚   └── 000_rgb.png
β”‚   β”‚   β”‚   └── ...
β”‚
β”œβ”€β”€ test/
β”‚   β”œβ”€β”€ input/
β”‚   β”‚   β”œβ”€β”€ 00/                             # scene 0
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_rgb.png
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ 01/                             # scene 1
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_rgb.png
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   └── ...
β”‚
β”‚   β”œβ”€β”€ gt/
β”‚   β”‚   β”œβ”€β”€ 00/                             # scene 0
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   └── 000_rgb.png
β”‚   β”‚   β”œβ”€β”€ 01/                             # scene 1
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_000.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_045.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_090.png
β”‚   β”‚   β”‚   β”œβ”€β”€ 000_135.png
β”‚   β”‚   β”‚   └── 000_rgb.png
β”‚   β”‚   └── ...
└── ...
```

1. The dataset is divided into **train** and **test** subsets, and both follow a similar directory structure.
2. The **train** subset is further divided into **easy** and **hard** sets, which share the same internal structure. The **test** subset is not split by difficulty, but its structure is identical.
3. Taking the **test** set as an example, it contains two subfolders: **input** and **gt**. The *input* folder stores images with reflections, while the *gt* folder contains the corresponding clean images without reflections. Both folders include the same number of scenes (e.g., 00, 01, 02, ...).
4. In `test/input/00`, there are multiple images named in the format `xxx_yyy.png`. Here, **xxx** denotes the index of the captured sample within scene `00`. **yyy** may be one of {000, 045, 090, 135, rgb}: the first four represent polarization-based images, and `rgb` corresponds to the RGB image of the current scene.
5. In `test/gt/00`, there is a single image named `000_yyy.png`, where '000_rgb.png' serves as the ground truth for all captured samples in the corresponding `input/00` folder.

To train or evaluate a polarization-based reflection removal model, each sample pair can be constructed as follows. For a given scene (e.g., 00), the input consists of five imagesβ€”000_000.png, 000_045.png, 000_090.png, 000_135.png, and 000_rgb.pngβ€”and the corresponding ground truth is gt/00/000_rgb.png. Similarly:

- input/00/{001_000.png, 001_045.png, 001_090.png, 001_135.png, 001_rgb.png} β†’ gt/00/000_rgb.png

- input/00/{002_000.png, 002_045.png, 002_090.png, 002_135.png, 002_rgb.png} β†’ gt/00/000_rgb.png

and so on for the remaining examples within the same scene.

If you want raw images, please find them at https://huggingface.co/datasets/Mingde/PolaRGB_raw or contact me via [email protected].

## Citation

If you use the PolarFree dataset in your research, please cite the following paper:ξˆ†

```bibtex
@inproceedings{polarfree2025,
  title={PolarFree: Polarization-based Reflection-Free Imaging},
  author={Yao, Mingde and Wang, Menglu and Tam, King-Man and Li, Lingen and Xue, Tianfan and Gu, Jinwei},
  booktitle={CVPR},
  year={2025}
}
```

For more information, please visit the project page:

- GitHub Repository: [https://github.com/mdyao/PolarFree](https://github.com/mdyao/PolarFree)
- Paper: [https://arxiv.org/abs/2503.18055](https://arxiv.org/abs/2503.18055)ξˆ†

---