Upload jv_id_tts.py with huggingface_hub
Browse files- jv_id_tts.py +15 -15
jv_id_tts.py
CHANGED
|
@@ -5,14 +5,14 @@ from typing import List
|
|
| 5 |
|
| 6 |
import datasets
|
| 7 |
|
| 8 |
-
from
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
DEFAULT_SOURCE_VIEW_NAME, Tasks)
|
| 12 |
|
| 13 |
_DATASETNAME = "jv_id_tts"
|
| 14 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
| 15 |
-
_UNIFIED_VIEW_NAME =
|
| 16 |
|
| 17 |
_LANGUAGES = ["jav"]
|
| 18 |
_LOCAL = False
|
|
@@ -38,7 +38,7 @@ This dataset was collected by Google in collaboration with Gadjah Mada Universit
|
|
| 38 |
|
| 39 |
_HOMEPAGE = "http://openslr.org/41/"
|
| 40 |
|
| 41 |
-
_LICENSE =
|
| 42 |
|
| 43 |
_URLs = {
|
| 44 |
_DATASETNAME: {
|
|
@@ -50,25 +50,25 @@ _URLs = {
|
|
| 50 |
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
|
| 51 |
|
| 52 |
_SOURCE_VERSION = "1.0.0"
|
| 53 |
-
|
| 54 |
|
| 55 |
|
| 56 |
class JvIdTTS(datasets.GeneratorBasedBuilder):
|
| 57 |
"""jv_id_tts contains high-quality Multi-speaker TTS data for Javanese (jv-ID)."""
|
| 58 |
|
| 59 |
BUILDER_CONFIGS = [
|
| 60 |
-
|
| 61 |
name="jv_id_tts_source",
|
| 62 |
version=datasets.Version(_SOURCE_VERSION),
|
| 63 |
description="JV_ID_TTS source schema",
|
| 64 |
schema="source",
|
| 65 |
subset_id="jv_id_tts",
|
| 66 |
),
|
| 67 |
-
|
| 68 |
-
name="
|
| 69 |
-
version=datasets.Version(
|
| 70 |
description="JV_ID_TTS Nusantara schema",
|
| 71 |
-
schema="
|
| 72 |
subset_id="jv_id_tts",
|
| 73 |
),
|
| 74 |
]
|
|
@@ -86,7 +86,7 @@ class JvIdTTS(datasets.GeneratorBasedBuilder):
|
|
| 86 |
"text": datasets.Value("string"),
|
| 87 |
}
|
| 88 |
)
|
| 89 |
-
elif self.config.schema == "
|
| 90 |
features = schemas.speech_text_features
|
| 91 |
|
| 92 |
return datasets.DatasetInfo(
|
|
@@ -114,7 +114,7 @@ class JvIdTTS(datasets.GeneratorBasedBuilder):
|
|
| 114 |
|
| 115 |
def _generate_examples(self, male_filepath: Path, female_filepath: Path):
|
| 116 |
|
| 117 |
-
if self.config.schema == "source" or self.config.schema == "
|
| 118 |
tsv_file = os.path.join(male_filepath, "jv_id_male", "line_index.tsv")
|
| 119 |
with open(tsv_file, "r") as file:
|
| 120 |
tsv_data = csv.reader(file, delimiter="\t")
|
|
@@ -135,7 +135,7 @@ class JvIdTTS(datasets.GeneratorBasedBuilder):
|
|
| 135 |
"text": transcription_text,
|
| 136 |
}
|
| 137 |
yield audio_id, ex
|
| 138 |
-
elif self.config.schema == "
|
| 139 |
ex = {
|
| 140 |
"id": audio_id,
|
| 141 |
"speaker_id": speaker_id,
|
|
@@ -168,7 +168,7 @@ class JvIdTTS(datasets.GeneratorBasedBuilder):
|
|
| 168 |
"text": transcription_text,
|
| 169 |
}
|
| 170 |
yield audio_id, ex
|
| 171 |
-
elif self.config.schema == "
|
| 172 |
ex = {
|
| 173 |
"id": audio_id,
|
| 174 |
"speaker_id": speaker_id,
|
|
|
|
| 5 |
|
| 6 |
import datasets
|
| 7 |
|
| 8 |
+
from seacrowd.utils import schemas
|
| 9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 10 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, Licenses,
|
| 11 |
DEFAULT_SOURCE_VIEW_NAME, Tasks)
|
| 12 |
|
| 13 |
_DATASETNAME = "jv_id_tts"
|
| 14 |
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
| 15 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
| 16 |
|
| 17 |
_LANGUAGES = ["jav"]
|
| 18 |
_LOCAL = False
|
|
|
|
| 38 |
|
| 39 |
_HOMEPAGE = "http://openslr.org/41/"
|
| 40 |
|
| 41 |
+
_LICENSE = Licenses.CC_BY_SA_4_0.value
|
| 42 |
|
| 43 |
_URLs = {
|
| 44 |
_DATASETNAME: {
|
|
|
|
| 50 |
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH]
|
| 51 |
|
| 52 |
_SOURCE_VERSION = "1.0.0"
|
| 53 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 54 |
|
| 55 |
|
| 56 |
class JvIdTTS(datasets.GeneratorBasedBuilder):
|
| 57 |
"""jv_id_tts contains high-quality Multi-speaker TTS data for Javanese (jv-ID)."""
|
| 58 |
|
| 59 |
BUILDER_CONFIGS = [
|
| 60 |
+
SEACrowdConfig(
|
| 61 |
name="jv_id_tts_source",
|
| 62 |
version=datasets.Version(_SOURCE_VERSION),
|
| 63 |
description="JV_ID_TTS source schema",
|
| 64 |
schema="source",
|
| 65 |
subset_id="jv_id_tts",
|
| 66 |
),
|
| 67 |
+
SEACrowdConfig(
|
| 68 |
+
name="jv_id_tts_seacrowd_sptext",
|
| 69 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 70 |
description="JV_ID_TTS Nusantara schema",
|
| 71 |
+
schema="seacrowd_sptext",
|
| 72 |
subset_id="jv_id_tts",
|
| 73 |
),
|
| 74 |
]
|
|
|
|
| 86 |
"text": datasets.Value("string"),
|
| 87 |
}
|
| 88 |
)
|
| 89 |
+
elif self.config.schema == "seacrowd_sptext":
|
| 90 |
features = schemas.speech_text_features
|
| 91 |
|
| 92 |
return datasets.DatasetInfo(
|
|
|
|
| 114 |
|
| 115 |
def _generate_examples(self, male_filepath: Path, female_filepath: Path):
|
| 116 |
|
| 117 |
+
if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":
|
| 118 |
tsv_file = os.path.join(male_filepath, "jv_id_male", "line_index.tsv")
|
| 119 |
with open(tsv_file, "r") as file:
|
| 120 |
tsv_data = csv.reader(file, delimiter="\t")
|
|
|
|
| 135 |
"text": transcription_text,
|
| 136 |
}
|
| 137 |
yield audio_id, ex
|
| 138 |
+
elif self.config.schema == "seacrowd_sptext":
|
| 139 |
ex = {
|
| 140 |
"id": audio_id,
|
| 141 |
"speaker_id": speaker_id,
|
|
|
|
| 168 |
"text": transcription_text,
|
| 169 |
}
|
| 170 |
yield audio_id, ex
|
| 171 |
+
elif self.config.schema == "seacrowd_sptext":
|
| 172 |
ex = {
|
| 173 |
"id": audio_id,
|
| 174 |
"speaker_id": speaker_id,
|