# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime as dt from dataclasses import dataclass, field from logging import getLogger from pathlib import Path from lerobot import envs, policies # noqa: F401 from lerobot.configs import parser from lerobot.configs.default import EvalConfig from lerobot.configs.policies import PreTrainedConfig logger = getLogger(__name__) @dataclass class EvalPipelineConfig: # Either the repo ID of a model hosted on the Hub or a path to a directory containing weights # saved using `Policy.save_pretrained`. If not provided, the policy is initialized from scratch # (useful for debugging). This argument is mutually exclusive with `--config`. env: envs.EnvConfig eval: EvalConfig = field(default_factory=EvalConfig) policy: PreTrainedConfig | None = None output_dir: Path | None = None job_name: str | None = None seed: int | None = 1000 # Rename map for the observation to override the image and state keys rename_map: dict[str, str] = field(default_factory=dict) def __post_init__(self) -> None: # HACK: We parse again the cli args here to get the pretrained path if there was one. policy_path = parser.get_path_arg("policy") if policy_path: cli_overrides = parser.get_cli_overrides("policy") self.policy = PreTrainedConfig.from_pretrained(policy_path, cli_overrides=cli_overrides) self.policy.pretrained_path = Path(policy_path) else: logger.warning( "No pretrained path was provided, evaluated policy will be built from scratch (random weights)." ) if not self.job_name: if self.env is None: self.job_name = f"{self.policy.type if self.policy is not None else 'scratch'}" else: self.job_name = ( f"{self.env.type}_{self.policy.type if self.policy is not None else 'scratch'}" ) logger.warning(f"No job name provided, using '{self.job_name}' as job name.") if not self.output_dir: now = dt.datetime.now() eval_dir = f"{now:%Y-%m-%d}/{now:%H-%M-%S}_{self.job_name}" self.output_dir = Path("outputs/eval") / eval_dir @classmethod def __get_path_fields__(cls) -> list[str]: """This enables the parser to load config from the policy using `--policy.path=local/dir`""" return ["policy"]