Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Size:
1K<n<10K
Tags:
emotion-classification
License:
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @InProceedings{SemEval2018Task1, | |
| author = {Mohammad, Saif M. and Bravo-Marquez, Felipe and Salameh, Mohammad and Kiritchenko, Svetlana}, | |
| title = {SemEval-2018 {T}ask 1: {A}ffect in Tweets}, | |
| booktitle = {Proceedings of International Workshop on Semantic Evaluation (SemEval-2018)}, | |
| address = {New Orleans, LA, USA}, | |
| year = {2018}} | |
| """ | |
| _DESCRIPTION = """\ | |
| SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification. | |
| This is a dataset for multilabel emotion classification for tweets. | |
| 'Given a tweet, classify it as 'neutral or no emotion' or as one, or more, of eleven given emotions that best represent the mental state of the tweeter.' | |
| It contains 22467 tweets in three languages manually annotated by crowdworkers using Best–Worst Scaling. | |
| """ | |
| _HOMEPAGE = "https://competitions.codalab.org/competitions/17751" | |
| _LICENSE = "" | |
| _URLs = { | |
| "subtask5.english": ["https://saifmohammad.com/WebDocs/AIT-2018/AIT2018-DATA/SemEval2018-Task1-all-data.zip"], | |
| "subtask5.spanish": ["https://saifmohammad.com/WebDocs/AIT-2018/AIT2018-DATA/SemEval2018-Task1-all-data.zip"], | |
| "subtask5.arabic": ["https://saifmohammad.com/WebDocs/AIT-2018/AIT2018-DATA/SemEval2018-Task1-all-data.zip"], | |
| } | |
| class SemEval2018Task1(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.1.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig( | |
| name="subtask5.english", | |
| version=VERSION, | |
| description="This is the English dataset of subtask 5: E-c: Detecting Emotions.", | |
| ), | |
| datasets.BuilderConfig( | |
| name="subtask5.spanish", | |
| version=VERSION, | |
| description="This is the Spanish dataset of subtask 5: E-c: Detecting Emotions.", | |
| ), | |
| datasets.BuilderConfig( | |
| name="subtask5.arabic", | |
| version=VERSION, | |
| description="This is the Arabic dataset of subtask 5: E-c: Detecting Emotions.", | |
| ), | |
| ] | |
| def _info(self): | |
| features = datasets.Features( | |
| { | |
| "ID": datasets.Value("string"), | |
| "Tweet": datasets.Value("string"), | |
| "anger": datasets.Value("bool"), | |
| "anticipation": datasets.Value("bool"), | |
| "disgust": datasets.Value("bool"), | |
| "fear": datasets.Value("bool"), | |
| "joy": datasets.Value("bool"), | |
| "love": datasets.Value("bool"), | |
| "optimism": datasets.Value("bool"), | |
| "pessimism": datasets.Value("bool"), | |
| "sadness": datasets.Value("bool"), | |
| "surprise": datasets.Value("bool"), | |
| "trust": datasets.Value("bool"), | |
| } | |
| ) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| my_urls = _URLs[self.config.name] | |
| if self.config.name == "subtask5.english": | |
| shortname = "En" | |
| longname = "English" | |
| if self.config.name == "subtask5.spanish": | |
| shortname = "Es" | |
| longname = "Spanish" | |
| if self.config.name == "subtask5.arabic": | |
| shortname = "Ar" | |
| longname = "Arabic" | |
| data_dir = dl_manager.download_and_extract(my_urls) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| data_dir[0], | |
| "SemEval2018-Task1-all-data/" + longname + "/E-c/2018-E-c-" + shortname + "-train.txt", | |
| ), | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| data_dir[0], | |
| "SemEval2018-Task1-all-data/" + longname + "/E-c/2018-E-c-" + shortname + "-test-gold.txt", | |
| ), | |
| "split": "test", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": os.path.join( | |
| data_dir[0], | |
| "SemEval2018-Task1-all-data/" + longname + "/E-c/2018-E-c-" + shortname + "-dev.txt", | |
| ), | |
| "split": "dev", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| """Yields examples as (key, example) tuples.""" | |
| with open(filepath, encoding="utf-8") as f: | |
| next(f) # skip header | |
| for id_, row in enumerate(f): | |
| data = row.split("\t") | |
| yield id_, { | |
| "ID": data[0], | |
| "Tweet": data[1], | |
| "anger": int(data[2]), | |
| "anticipation": int(data[3]), | |
| "disgust": int(data[4]), | |
| "fear": int(data[5]), | |
| "joy": int(data[6]), | |
| "love": int(data[7]), | |
| "optimism": int(data[8]), | |
| "pessimism": int(data[9]), | |
| "sadness": int(data[10]), | |
| "surprise": int(data[11]), | |
| "trust": int(data[12]), | |
| } | |