Upload folder using huggingface_hub
Browse files- main/lpw_stable_diffusion_xl.py +1 -12
- main/mixture_tiling_sdxl.py +2 -20
- main/mod_controlnet_tile_sr_sdxl.py +2 -19
- main/pipeline_controlnet_xl_kolors.py +1 -18
- main/pipeline_controlnet_xl_kolors_img2img.py +1 -18
- main/pipeline_controlnet_xl_kolors_inpaint.py +1 -18
- main/pipeline_demofusion_sdxl.py +2 -13
- main/pipeline_faithdiff_stable_diffusion_xl.py +1 -24
- main/pipeline_kolors_differential_img2img.py +2 -18
- main/pipeline_kolors_inpainting.py +1 -22
- main/pipeline_sdxl_style_aligned.py +1 -17
- main/pipeline_stable_diffusion_upscale_ldm3d.py +3 -18
- main/pipeline_stable_diffusion_xl_attentive_eraser.py +1 -22
- main/pipeline_stable_diffusion_xl_controlnet_adapter.py +2 -13
- main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py +2 -13
- main/pipeline_stable_diffusion_xl_differential_img2img.py +1 -18
- main/pipeline_stable_diffusion_xl_ipex.py +1 -19
main/lpw_stable_diffusion_xl.py
CHANGED
|
@@ -29,7 +29,6 @@ from diffusers.loaders import (
|
|
| 29 |
TextualInversionLoaderMixin,
|
| 30 |
)
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 32 |
-
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 33 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 34 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 35 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -1328,18 +1327,8 @@ class SDXLLongPromptWeightingPipeline(
|
|
| 1328 |
|
| 1329 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1330 |
def upcast_vae(self):
|
| 1331 |
-
|
| 1332 |
self.vae.to(dtype=torch.float32)
|
| 1333 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1334 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1335 |
-
(AttnProcessor2_0, XFormersAttnProcessor),
|
| 1336 |
-
)
|
| 1337 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1338 |
-
# to be in float32 which can save lots of memory
|
| 1339 |
-
if use_torch_2_0_or_xformers:
|
| 1340 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1341 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1342 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1343 |
|
| 1344 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1345 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
|
|
| 29 |
TextualInversionLoaderMixin,
|
| 30 |
)
|
| 31 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
|
|
| 32 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 33 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
| 34 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 1327 |
|
| 1328 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1329 |
def upcast_vae(self):
|
| 1330 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1331 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1332 |
|
| 1333 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1334 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
main/mixture_tiling_sdxl.py
CHANGED
|
@@ -30,17 +30,13 @@ from diffusers.loaders import (
|
|
| 30 |
TextualInversionLoaderMixin,
|
| 31 |
)
|
| 32 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 33 |
-
from diffusers.models.attention_processor import (
|
| 34 |
-
AttnProcessor2_0,
|
| 35 |
-
FusedAttnProcessor2_0,
|
| 36 |
-
XFormersAttnProcessor,
|
| 37 |
-
)
|
| 38 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 39 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 40 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 41 |
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
| 42 |
from diffusers.utils import (
|
| 43 |
USE_PEFT_BACKEND,
|
|
|
|
| 44 |
is_invisible_watermark_available,
|
| 45 |
is_torch_xla_available,
|
| 46 |
logging,
|
|
@@ -710,22 +706,8 @@ class StableDiffusionXLTilingPipeline(
|
|
| 710 |
return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
|
| 711 |
|
| 712 |
def upcast_vae(self):
|
| 713 |
-
|
| 714 |
self.vae.to(dtype=torch.float32)
|
| 715 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 716 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 717 |
-
(
|
| 718 |
-
AttnProcessor2_0,
|
| 719 |
-
XFormersAttnProcessor,
|
| 720 |
-
FusedAttnProcessor2_0,
|
| 721 |
-
),
|
| 722 |
-
)
|
| 723 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 724 |
-
# to be in float32 which can save lots of memory
|
| 725 |
-
if use_torch_2_0_or_xformers:
|
| 726 |
-
self.vae.post_quant_conv.to(dtype)
|
| 727 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 728 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 729 |
|
| 730 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 731 |
def get_guidance_scale_embedding(
|
|
|
|
| 30 |
TextualInversionLoaderMixin,
|
| 31 |
)
|
| 32 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 34 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 35 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 36 |
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
| 37 |
from diffusers.utils import (
|
| 38 |
USE_PEFT_BACKEND,
|
| 39 |
+
deprecate,
|
| 40 |
is_invisible_watermark_available,
|
| 41 |
is_torch_xla_available,
|
| 42 |
logging,
|
|
|
|
| 706 |
return torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
|
| 707 |
|
| 708 |
def upcast_vae(self):
|
| 709 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 710 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 711 |
|
| 712 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 713 |
def get_guidance_scale_embedding(
|
main/mod_controlnet_tile_sr_sdxl.py
CHANGED
|
@@ -39,16 +39,13 @@ from diffusers.models import (
|
|
| 39 |
MultiControlNetModel,
|
| 40 |
UNet2DConditionModel,
|
| 41 |
)
|
| 42 |
-
from diffusers.models.attention_processor import (
|
| 43 |
-
AttnProcessor2_0,
|
| 44 |
-
XFormersAttnProcessor,
|
| 45 |
-
)
|
| 46 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 47 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 48 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 49 |
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
| 50 |
from diffusers.utils import (
|
| 51 |
USE_PEFT_BACKEND,
|
|
|
|
| 52 |
logging,
|
| 53 |
replace_example_docstring,
|
| 54 |
scale_lora_layers,
|
|
@@ -1220,23 +1217,9 @@ class StableDiffusionXLControlNetTileSRPipeline(
|
|
| 1220 |
|
| 1221 |
return tile_weights, tile_row_overlaps, tile_col_overlaps
|
| 1222 |
|
| 1223 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1224 |
def upcast_vae(self):
|
| 1225 |
-
|
| 1226 |
self.vae.to(dtype=torch.float32)
|
| 1227 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1228 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1229 |
-
(
|
| 1230 |
-
AttnProcessor2_0,
|
| 1231 |
-
XFormersAttnProcessor,
|
| 1232 |
-
),
|
| 1233 |
-
)
|
| 1234 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1235 |
-
# to be in float32 which can save lots of memory
|
| 1236 |
-
if use_torch_2_0_or_xformers:
|
| 1237 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1238 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1239 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1240 |
|
| 1241 |
@property
|
| 1242 |
def guidance_scale(self):
|
|
|
|
| 39 |
MultiControlNetModel,
|
| 40 |
UNet2DConditionModel,
|
| 41 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 43 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 44 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 45 |
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
| 46 |
from diffusers.utils import (
|
| 47 |
USE_PEFT_BACKEND,
|
| 48 |
+
deprecate,
|
| 49 |
logging,
|
| 50 |
replace_example_docstring,
|
| 51 |
scale_lora_layers,
|
|
|
|
| 1217 |
|
| 1218 |
return tile_weights, tile_row_overlaps, tile_col_overlaps
|
| 1219 |
|
|
|
|
| 1220 |
def upcast_vae(self):
|
| 1221 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1222 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1223 |
|
| 1224 |
@property
|
| 1225 |
def guidance_scale(self):
|
main/pipeline_controlnet_xl_kolors.py
CHANGED
|
@@ -40,10 +40,6 @@ from diffusers.models import (
|
|
| 40 |
MultiControlNetModel,
|
| 41 |
UNet2DConditionModel,
|
| 42 |
)
|
| 43 |
-
from diffusers.models.attention_processor import (
|
| 44 |
-
AttnProcessor2_0,
|
| 45 |
-
XFormersAttnProcessor,
|
| 46 |
-
)
|
| 47 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 48 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 49 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -760,21 +756,8 @@ class KolorsControlNetPipeline(
|
|
| 760 |
|
| 761 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 762 |
def upcast_vae(self):
|
| 763 |
-
|
| 764 |
self.vae.to(dtype=torch.float32)
|
| 765 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 766 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 767 |
-
(
|
| 768 |
-
AttnProcessor2_0,
|
| 769 |
-
XFormersAttnProcessor,
|
| 770 |
-
),
|
| 771 |
-
)
|
| 772 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 773 |
-
# to be in float32 which can save lots of memory
|
| 774 |
-
if use_torch_2_0_or_xformers:
|
| 775 |
-
self.vae.post_quant_conv.to(dtype)
|
| 776 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 777 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 778 |
|
| 779 |
@property
|
| 780 |
def guidance_scale(self):
|
|
|
|
| 40 |
MultiControlNetModel,
|
| 41 |
UNet2DConditionModel,
|
| 42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 44 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 45 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 756 |
|
| 757 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 758 |
def upcast_vae(self):
|
| 759 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 760 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 761 |
|
| 762 |
@property
|
| 763 |
def guidance_scale(self):
|
main/pipeline_controlnet_xl_kolors_img2img.py
CHANGED
|
@@ -40,10 +40,6 @@ from diffusers.models import (
|
|
| 40 |
MultiControlNetModel,
|
| 41 |
UNet2DConditionModel,
|
| 42 |
)
|
| 43 |
-
from diffusers.models.attention_processor import (
|
| 44 |
-
AttnProcessor2_0,
|
| 45 |
-
XFormersAttnProcessor,
|
| 46 |
-
)
|
| 47 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 48 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 49 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -930,21 +926,8 @@ class KolorsControlNetImg2ImgPipeline(
|
|
| 930 |
|
| 931 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 932 |
def upcast_vae(self):
|
| 933 |
-
|
| 934 |
self.vae.to(dtype=torch.float32)
|
| 935 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 936 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 937 |
-
(
|
| 938 |
-
AttnProcessor2_0,
|
| 939 |
-
XFormersAttnProcessor,
|
| 940 |
-
),
|
| 941 |
-
)
|
| 942 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 943 |
-
# to be in float32 which can save lots of memory
|
| 944 |
-
if use_torch_2_0_or_xformers:
|
| 945 |
-
self.vae.post_quant_conv.to(dtype)
|
| 946 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 947 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 948 |
|
| 949 |
@property
|
| 950 |
def guidance_scale(self):
|
|
|
|
| 40 |
MultiControlNetModel,
|
| 41 |
UNet2DConditionModel,
|
| 42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 44 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 45 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 926 |
|
| 927 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 928 |
def upcast_vae(self):
|
| 929 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 930 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 931 |
|
| 932 |
@property
|
| 933 |
def guidance_scale(self):
|
main/pipeline_controlnet_xl_kolors_inpaint.py
CHANGED
|
@@ -39,10 +39,6 @@ from diffusers.models import (
|
|
| 39 |
MultiControlNetModel,
|
| 40 |
UNet2DConditionModel,
|
| 41 |
)
|
| 42 |
-
from diffusers.models.attention_processor import (
|
| 43 |
-
AttnProcessor2_0,
|
| 44 |
-
XFormersAttnProcessor,
|
| 45 |
-
)
|
| 46 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 47 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 48 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -1006,21 +1002,8 @@ class KolorsControlNetInpaintPipeline(
|
|
| 1006 |
|
| 1007 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1008 |
def upcast_vae(self):
|
| 1009 |
-
|
| 1010 |
self.vae.to(dtype=torch.float32)
|
| 1011 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1012 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1013 |
-
(
|
| 1014 |
-
AttnProcessor2_0,
|
| 1015 |
-
XFormersAttnProcessor,
|
| 1016 |
-
),
|
| 1017 |
-
)
|
| 1018 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1019 |
-
# to be in float32 which can save lots of memory
|
| 1020 |
-
if use_torch_2_0_or_xformers:
|
| 1021 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1022 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1023 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1024 |
|
| 1025 |
@property
|
| 1026 |
def denoising_end(self):
|
|
|
|
| 39 |
MultiControlNetModel,
|
| 40 |
UNet2DConditionModel,
|
| 41 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 43 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 44 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 1002 |
|
| 1003 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1004 |
def upcast_vae(self):
|
| 1005 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1006 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1007 |
|
| 1008 |
@property
|
| 1009 |
def denoising_end(self):
|
main/pipeline_demofusion_sdxl.py
CHANGED
|
@@ -16,11 +16,11 @@ from diffusers.loaders import (
|
|
| 16 |
TextualInversionLoaderMixin,
|
| 17 |
)
|
| 18 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 19 |
-
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 20 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 21 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 22 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 23 |
from diffusers.utils import (
|
|
|
|
| 24 |
is_accelerate_available,
|
| 25 |
is_accelerate_version,
|
| 26 |
is_invisible_watermark_available,
|
|
@@ -612,20 +612,9 @@ class DemoFusionSDXLPipeline(
|
|
| 612 |
|
| 613 |
return image
|
| 614 |
|
| 615 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 616 |
def upcast_vae(self):
|
| 617 |
-
|
| 618 |
self.vae.to(dtype=torch.float32)
|
| 619 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 620 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 621 |
-
(AttnProcessor2_0, XFormersAttnProcessor),
|
| 622 |
-
)
|
| 623 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 624 |
-
# to be in float32 which can save lots of memory
|
| 625 |
-
if use_torch_2_0_or_xformers:
|
| 626 |
-
self.vae.post_quant_conv.to(dtype)
|
| 627 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 628 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 629 |
|
| 630 |
@torch.no_grad()
|
| 631 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
|
|
| 16 |
TextualInversionLoaderMixin,
|
| 17 |
)
|
| 18 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
| 19 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 20 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 21 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 22 |
from diffusers.utils import (
|
| 23 |
+
deprecate,
|
| 24 |
is_accelerate_available,
|
| 25 |
is_accelerate_version,
|
| 26 |
is_invisible_watermark_available,
|
|
|
|
| 612 |
|
| 613 |
return image
|
| 614 |
|
|
|
|
| 615 |
def upcast_vae(self):
|
| 616 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 617 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
|
| 619 |
@torch.no_grad()
|
| 620 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
main/pipeline_faithdiff_stable_diffusion_xl.py
CHANGED
|
@@ -40,13 +40,6 @@ from diffusers.loaders import (
|
|
| 40 |
UNet2DConditionLoadersMixin,
|
| 41 |
)
|
| 42 |
from diffusers.models import AutoencoderKL
|
| 43 |
-
from diffusers.models.attention_processor import (
|
| 44 |
-
AttnProcessor2_0,
|
| 45 |
-
FusedAttnProcessor2_0,
|
| 46 |
-
LoRAAttnProcessor2_0,
|
| 47 |
-
LoRAXFormersAttnProcessor,
|
| 48 |
-
XFormersAttnProcessor,
|
| 49 |
-
)
|
| 50 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 51 |
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block
|
| 52 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
@@ -1642,24 +1635,8 @@ class FaithDiffStableDiffusionXLPipeline(
|
|
| 1642 |
return latents
|
| 1643 |
|
| 1644 |
def upcast_vae(self):
|
| 1645 |
-
|
| 1646 |
self.vae.to(dtype=torch.float32)
|
| 1647 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1648 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1649 |
-
(
|
| 1650 |
-
AttnProcessor2_0,
|
| 1651 |
-
XFormersAttnProcessor,
|
| 1652 |
-
LoRAXFormersAttnProcessor,
|
| 1653 |
-
LoRAAttnProcessor2_0,
|
| 1654 |
-
FusedAttnProcessor2_0,
|
| 1655 |
-
),
|
| 1656 |
-
)
|
| 1657 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1658 |
-
# to be in float32 which can save lots of memory
|
| 1659 |
-
if use_torch_2_0_or_xformers:
|
| 1660 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1661 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1662 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1663 |
|
| 1664 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1665 |
def get_guidance_scale_embedding(
|
|
|
|
| 40 |
UNet2DConditionLoadersMixin,
|
| 41 |
)
|
| 42 |
from diffusers.models import AutoencoderKL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 44 |
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block
|
| 45 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
|
| 1635 |
return latents
|
| 1636 |
|
| 1637 |
def upcast_vae(self):
|
| 1638 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1639 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1640 |
|
| 1641 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1642 |
def get_guidance_scale_embedding(
|
main/pipeline_kolors_differential_img2img.py
CHANGED
|
@@ -22,13 +22,12 @@ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
| 22 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 23 |
from diffusers.loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
|
| 24 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 25 |
-
from diffusers.models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
|
| 26 |
from diffusers.pipelines.kolors.pipeline_output import KolorsPipelineOutput
|
| 27 |
from diffusers.pipelines.kolors.text_encoder import ChatGLMModel
|
| 28 |
from diffusers.pipelines.kolors.tokenizer import ChatGLMTokenizer
|
| 29 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 30 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 31 |
-
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
| 32 |
from diffusers.utils.torch_utils import randn_tensor
|
| 33 |
|
| 34 |
|
|
@@ -709,24 +708,9 @@ class KolorsDifferentialImg2ImgPipeline(
|
|
| 709 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 710 |
return add_time_ids
|
| 711 |
|
| 712 |
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
|
| 713 |
def upcast_vae(self):
|
| 714 |
-
|
| 715 |
self.vae.to(dtype=torch.float32)
|
| 716 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 717 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 718 |
-
(
|
| 719 |
-
AttnProcessor2_0,
|
| 720 |
-
XFormersAttnProcessor,
|
| 721 |
-
FusedAttnProcessor2_0,
|
| 722 |
-
),
|
| 723 |
-
)
|
| 724 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 725 |
-
# to be in float32 which can save lots of memory
|
| 726 |
-
if use_torch_2_0_or_xformers:
|
| 727 |
-
self.vae.post_quant_conv.to(dtype)
|
| 728 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 729 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 730 |
|
| 731 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 732 |
def get_guidance_scale_embedding(
|
|
|
|
| 22 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 23 |
from diffusers.loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
|
| 24 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
|
|
| 25 |
from diffusers.pipelines.kolors.pipeline_output import KolorsPipelineOutput
|
| 26 |
from diffusers.pipelines.kolors.text_encoder import ChatGLMModel
|
| 27 |
from diffusers.pipelines.kolors.tokenizer import ChatGLMTokenizer
|
| 28 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 29 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 30 |
+
from diffusers.utils import deprecate, is_torch_xla_available, logging, replace_example_docstring
|
| 31 |
from diffusers.utils.torch_utils import randn_tensor
|
| 32 |
|
| 33 |
|
|
|
|
| 708 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 709 |
return add_time_ids
|
| 710 |
|
|
|
|
| 711 |
def upcast_vae(self):
|
| 712 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 713 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 714 |
|
| 715 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 716 |
def get_guidance_scale_embedding(
|
main/pipeline_kolors_inpainting.py
CHANGED
|
@@ -32,12 +32,6 @@ from diffusers.loaders import (
|
|
| 32 |
TextualInversionLoaderMixin,
|
| 33 |
)
|
| 34 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 35 |
-
from diffusers.models.attention_processor import (
|
| 36 |
-
AttnProcessor2_0,
|
| 37 |
-
LoRAAttnProcessor2_0,
|
| 38 |
-
LoRAXFormersAttnProcessor,
|
| 39 |
-
XFormersAttnProcessor,
|
| 40 |
-
)
|
| 41 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 42 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 43 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -1008,23 +1002,8 @@ class KolorsInpaintPipeline(
|
|
| 1008 |
|
| 1009 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1010 |
def upcast_vae(self):
|
| 1011 |
-
|
| 1012 |
self.vae.to(dtype=torch.float32)
|
| 1013 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1014 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1015 |
-
(
|
| 1016 |
-
AttnProcessor2_0,
|
| 1017 |
-
XFormersAttnProcessor,
|
| 1018 |
-
LoRAXFormersAttnProcessor,
|
| 1019 |
-
LoRAAttnProcessor2_0,
|
| 1020 |
-
),
|
| 1021 |
-
)
|
| 1022 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1023 |
-
# to be in float32 which can save lots of memory
|
| 1024 |
-
if use_torch_2_0_or_xformers:
|
| 1025 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1026 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1027 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1028 |
|
| 1029 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1030 |
def get_guidance_scale_embedding(
|
|
|
|
| 32 |
TextualInversionLoaderMixin,
|
| 33 |
)
|
| 34 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
| 36 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 37 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 1002 |
|
| 1003 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1004 |
def upcast_vae(self):
|
| 1005 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1006 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1007 |
|
| 1008 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1009 |
def get_guidance_scale_embedding(
|
main/pipeline_sdxl_style_aligned.py
CHANGED
|
@@ -45,8 +45,6 @@ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionMode
|
|
| 45 |
from diffusers.models.attention_processor import (
|
| 46 |
Attention,
|
| 47 |
AttnProcessor2_0,
|
| 48 |
-
FusedAttnProcessor2_0,
|
| 49 |
-
XFormersAttnProcessor,
|
| 50 |
)
|
| 51 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 52 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
@@ -1151,22 +1149,8 @@ class StyleAlignedSDXLPipeline(
|
|
| 1151 |
return add_time_ids
|
| 1152 |
|
| 1153 |
def upcast_vae(self):
|
| 1154 |
-
|
| 1155 |
self.vae.to(dtype=torch.float32)
|
| 1156 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1157 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1158 |
-
(
|
| 1159 |
-
AttnProcessor2_0,
|
| 1160 |
-
XFormersAttnProcessor,
|
| 1161 |
-
FusedAttnProcessor2_0,
|
| 1162 |
-
),
|
| 1163 |
-
)
|
| 1164 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1165 |
-
# to be in float32 which can save lots of memory
|
| 1166 |
-
if use_torch_2_0_or_xformers:
|
| 1167 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1168 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1169 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1170 |
|
| 1171 |
def _enable_shared_attention_processors(
|
| 1172 |
self,
|
|
|
|
| 45 |
from diffusers.models.attention_processor import (
|
| 46 |
Attention,
|
| 47 |
AttnProcessor2_0,
|
|
|
|
|
|
|
| 48 |
)
|
| 49 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 50 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
|
| 1149 |
return add_time_ids
|
| 1150 |
|
| 1151 |
def upcast_vae(self):
|
| 1152 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1153 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1154 |
|
| 1155 |
def _enable_shared_attention_processors(
|
| 1156 |
self,
|
main/pipeline_stable_diffusion_upscale_ldm3d.py
CHANGED
|
@@ -503,24 +503,9 @@ class StableDiffusionUpscaleLDM3DPipeline(
|
|
| 503 |
latents = latents * self.scheduler.init_noise_sigma
|
| 504 |
return latents
|
| 505 |
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
# use_torch_2_0_or_xformers = isinstance(
|
| 510 |
-
# self.vae.decoder.mid_block.attentions[0].processor,
|
| 511 |
-
# (
|
| 512 |
-
# AttnProcessor2_0,
|
| 513 |
-
# XFormersAttnProcessor,
|
| 514 |
-
# LoRAXFormersAttnProcessor,
|
| 515 |
-
# LoRAAttnProcessor2_0,
|
| 516 |
-
# ),
|
| 517 |
-
# )
|
| 518 |
-
# # if xformers or torch_2_0 is used attention block does not need
|
| 519 |
-
# # to be in float32 which can save lots of memory
|
| 520 |
-
# if use_torch_2_0_or_xformers:
|
| 521 |
-
# self.vae.post_quant_conv.to(dtype)
|
| 522 |
-
# self.vae.decoder.conv_in.to(dtype)
|
| 523 |
-
# self.vae.decoder.mid_block.to(dtype)
|
| 524 |
|
| 525 |
@torch.no_grad()
|
| 526 |
def __call__(
|
|
|
|
| 503 |
latents = latents * self.scheduler.init_noise_sigma
|
| 504 |
return latents
|
| 505 |
|
| 506 |
+
def upcast_vae(self):
|
| 507 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 508 |
+
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
|
| 510 |
@torch.no_grad()
|
| 511 |
def __call__(
|
main/pipeline_stable_diffusion_xl_attentive_eraser.py
CHANGED
|
@@ -35,12 +35,6 @@ from diffusers.loaders import (
|
|
| 35 |
TextualInversionLoaderMixin,
|
| 36 |
)
|
| 37 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 38 |
-
from diffusers.models.attention_processor import (
|
| 39 |
-
AttnProcessor2_0,
|
| 40 |
-
LoRAAttnProcessor2_0,
|
| 41 |
-
LoRAXFormersAttnProcessor,
|
| 42 |
-
XFormersAttnProcessor,
|
| 43 |
-
)
|
| 44 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 45 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 46 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -1282,23 +1276,8 @@ class StableDiffusionXL_AE_Pipeline(
|
|
| 1282 |
|
| 1283 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1284 |
def upcast_vae(self):
|
| 1285 |
-
|
| 1286 |
self.vae.to(dtype=torch.float32)
|
| 1287 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1288 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1289 |
-
(
|
| 1290 |
-
AttnProcessor2_0,
|
| 1291 |
-
XFormersAttnProcessor,
|
| 1292 |
-
LoRAXFormersAttnProcessor,
|
| 1293 |
-
LoRAAttnProcessor2_0,
|
| 1294 |
-
),
|
| 1295 |
-
)
|
| 1296 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1297 |
-
# to be in float32 which can save lots of memory
|
| 1298 |
-
if use_torch_2_0_or_xformers:
|
| 1299 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1300 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1301 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1302 |
|
| 1303 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1304 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
|
|
| 35 |
TextualInversionLoaderMixin,
|
| 36 |
)
|
| 37 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 39 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 40 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 1276 |
|
| 1277 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1278 |
def upcast_vae(self):
|
| 1279 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1280 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1281 |
|
| 1282 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 1283 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
main/pipeline_stable_diffusion_xl_controlnet_adapter.py
CHANGED
|
@@ -25,7 +25,6 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz
|
|
| 25 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 26 |
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
| 27 |
from diffusers.models import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel
|
| 28 |
-
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 29 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 30 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 31 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
@@ -34,6 +33,7 @@ from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
| 34 |
from diffusers.utils import (
|
| 35 |
PIL_INTERPOLATION,
|
| 36 |
USE_PEFT_BACKEND,
|
|
|
|
| 37 |
logging,
|
| 38 |
replace_example_docstring,
|
| 39 |
scale_lora_layers,
|
|
@@ -793,20 +793,9 @@ class StableDiffusionXLControlNetAdapterPipeline(
|
|
| 793 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 794 |
return add_time_ids
|
| 795 |
|
| 796 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 797 |
def upcast_vae(self):
|
| 798 |
-
|
| 799 |
self.vae.to(dtype=torch.float32)
|
| 800 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 801 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 802 |
-
(AttnProcessor2_0, XFormersAttnProcessor),
|
| 803 |
-
)
|
| 804 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 805 |
-
# to be in float32 which can save lots of memory
|
| 806 |
-
if use_torch_2_0_or_xformers:
|
| 807 |
-
self.vae.post_quant_conv.to(dtype)
|
| 808 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 809 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 810 |
|
| 811 |
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
| 812 |
def _default_height_width(self, height, width, image):
|
|
|
|
| 25 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 26 |
from diffusers.loaders import FromSingleFileMixin, StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin
|
| 27 |
from diffusers.models import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter, UNet2DConditionModel
|
|
|
|
| 28 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 29 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 30 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
|
|
| 33 |
from diffusers.utils import (
|
| 34 |
PIL_INTERPOLATION,
|
| 35 |
USE_PEFT_BACKEND,
|
| 36 |
+
deprecate,
|
| 37 |
logging,
|
| 38 |
replace_example_docstring,
|
| 39 |
scale_lora_layers,
|
|
|
|
| 793 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 794 |
return add_time_ids
|
| 795 |
|
|
|
|
| 796 |
def upcast_vae(self):
|
| 797 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 798 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 799 |
|
| 800 |
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
| 801 |
def _default_height_width(self, height, width, image):
|
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py
CHANGED
|
@@ -43,7 +43,6 @@ from diffusers.models import (
|
|
| 43 |
T2IAdapter,
|
| 44 |
UNet2DConditionModel,
|
| 45 |
)
|
| 46 |
-
from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
|
| 47 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 48 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 49 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
@@ -52,6 +51,7 @@ from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
| 52 |
from diffusers.utils import (
|
| 53 |
PIL_INTERPOLATION,
|
| 54 |
USE_PEFT_BACKEND,
|
|
|
|
| 55 |
logging,
|
| 56 |
replace_example_docstring,
|
| 57 |
scale_lora_layers,
|
|
@@ -1130,20 +1130,9 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
|
|
| 1130 |
|
| 1131 |
return add_time_ids, add_neg_time_ids
|
| 1132 |
|
| 1133 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 1134 |
def upcast_vae(self):
|
| 1135 |
-
|
| 1136 |
self.vae.to(dtype=torch.float32)
|
| 1137 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 1138 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 1139 |
-
(AttnProcessor2_0, XFormersAttnProcessor),
|
| 1140 |
-
)
|
| 1141 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 1142 |
-
# to be in float32 which can save lots of memory
|
| 1143 |
-
if use_torch_2_0_or_xformers:
|
| 1144 |
-
self.vae.post_quant_conv.to(dtype)
|
| 1145 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 1146 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 1147 |
|
| 1148 |
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
| 1149 |
def _default_height_width(self, height, width, image):
|
|
|
|
| 43 |
T2IAdapter,
|
| 44 |
UNet2DConditionModel,
|
| 45 |
)
|
|
|
|
| 46 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 47 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 48 |
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
|
|
|
|
| 51 |
from diffusers.utils import (
|
| 52 |
PIL_INTERPOLATION,
|
| 53 |
USE_PEFT_BACKEND,
|
| 54 |
+
deprecate,
|
| 55 |
logging,
|
| 56 |
replace_example_docstring,
|
| 57 |
scale_lora_layers,
|
|
|
|
| 1130 |
|
| 1131 |
return add_time_ids, add_neg_time_ids
|
| 1132 |
|
|
|
|
| 1133 |
def upcast_vae(self):
|
| 1134 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 1135 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1136 |
|
| 1137 |
# Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width
|
| 1138 |
def _default_height_width(self, height, width, image):
|
main/pipeline_stable_diffusion_xl_differential_img2img.py
CHANGED
|
@@ -35,10 +35,6 @@ from diffusers.loaders import (
|
|
| 35 |
TextualInversionLoaderMixin,
|
| 36 |
)
|
| 37 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 38 |
-
from diffusers.models.attention_processor import (
|
| 39 |
-
AttnProcessor2_0,
|
| 40 |
-
XFormersAttnProcessor,
|
| 41 |
-
)
|
| 42 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 43 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 44 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
@@ -848,21 +844,8 @@ class StableDiffusionXLDifferentialImg2ImgPipeline(
|
|
| 848 |
|
| 849 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 850 |
def upcast_vae(self):
|
| 851 |
-
|
| 852 |
self.vae.to(dtype=torch.float32)
|
| 853 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 854 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 855 |
-
(
|
| 856 |
-
AttnProcessor2_0,
|
| 857 |
-
XFormersAttnProcessor,
|
| 858 |
-
),
|
| 859 |
-
)
|
| 860 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 861 |
-
# to be in float32 which can save lots of memory
|
| 862 |
-
if use_torch_2_0_or_xformers:
|
| 863 |
-
self.vae.post_quant_conv.to(dtype)
|
| 864 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 865 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 866 |
|
| 867 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 868 |
def get_guidance_scale_embedding(
|
|
|
|
| 35 |
TextualInversionLoaderMixin,
|
| 36 |
)
|
| 37 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 39 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 40 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
| 844 |
|
| 845 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 846 |
def upcast_vae(self):
|
| 847 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 848 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 849 |
|
| 850 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 851 |
def get_guidance_scale_embedding(
|
main/pipeline_stable_diffusion_xl_ipex.py
CHANGED
|
@@ -32,10 +32,6 @@ from diffusers.loaders import (
|
|
| 32 |
TextualInversionLoaderMixin,
|
| 33 |
)
|
| 34 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 35 |
-
from diffusers.models.attention_processor import (
|
| 36 |
-
AttnProcessor2_0,
|
| 37 |
-
XFormersAttnProcessor,
|
| 38 |
-
)
|
| 39 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 40 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
| 41 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
@@ -658,23 +654,9 @@ class StableDiffusionXLPipelineIpex(
|
|
| 658 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 659 |
return add_time_ids
|
| 660 |
|
| 661 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
| 662 |
def upcast_vae(self):
|
| 663 |
-
|
| 664 |
self.vae.to(dtype=torch.float32)
|
| 665 |
-
use_torch_2_0_or_xformers = isinstance(
|
| 666 |
-
self.vae.decoder.mid_block.attentions[0].processor,
|
| 667 |
-
(
|
| 668 |
-
AttnProcessor2_0,
|
| 669 |
-
XFormersAttnProcessor,
|
| 670 |
-
),
|
| 671 |
-
)
|
| 672 |
-
# if xformers or torch_2_0 is used attention block does not need
|
| 673 |
-
# to be in float32 which can save lots of memory
|
| 674 |
-
if use_torch_2_0_or_xformers:
|
| 675 |
-
self.vae.post_quant_conv.to(dtype)
|
| 676 |
-
self.vae.decoder.conv_in.to(dtype)
|
| 677 |
-
self.vae.decoder.mid_block.to(dtype)
|
| 678 |
|
| 679 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 680 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
|
|
| 32 |
TextualInversionLoaderMixin,
|
| 33 |
)
|
| 34 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
| 36 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
| 37 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
|
|
| 654 |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
| 655 |
return add_time_ids
|
| 656 |
|
|
|
|
| 657 |
def upcast_vae(self):
|
| 658 |
+
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
| 659 |
self.vae.to(dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
|
| 661 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 662 |
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|