| import datasets | |
| import csv | |
| import random | |
| class ppb_affinity(datasets.GeneratorBasedBuilder): | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="raw", description="Raw parsed PDBs dataset with critical filtrations only."), | |
| datasets.BuilderConfig(name="raw_rec", description="Raw parsed PDBs dataset with critical filtrations and missing residues recovered."), | |
| datasets.BuilderConfig(name="filtered", description="Raw dataset with additional cleaning and train/val/test splits."), | |
| datasets.BuilderConfig(name="filtered_random", description="Filtered dataset with random 80-10-10 splits."), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo() | |
| def _split_generators(self, dl_manager): | |
| if self.config.name == "raw": | |
| filepath = dl_manager.download_and_extract("raw.csv") | |
| return [datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": filepath} | |
| )] | |
| elif self.config.name == "raw_rec": | |
| filepath = dl_manager.download_and_extract("raw_recover_missing_res.csv") | |
| return [datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": filepath} | |
| )] | |
| elif self.config.name == "filtered": | |
| filepath = dl_manager.download_and_extract("filtered.csv") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": filepath, "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": filepath, "split": "val"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": filepath, "split": "test"}, | |
| ), | |
| ] | |
| elif self.config.name == "filtered_random": | |
| filepath = dl_manager.download_and_extract("filtered.csv") | |
| with open(filepath, encoding="utf-8") as f: | |
| reader = csv.DictReader(f) | |
| rows = list(reader) | |
| n_total = len(rows) | |
| indices = list(range(n_total)) | |
| rng = random.Random(42) | |
| rng.shuffle(indices) | |
| n_train = int(0.8 * n_total) | |
| n_val = int(0.1 * n_total) | |
| n_test = n_total - n_train - n_val | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": filepath, | |
| "shuffled_indices": indices, | |
| "split_start": 0, | |
| "split_end": n_train, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": filepath, | |
| "shuffled_indices": indices, | |
| "split_start": n_train, | |
| "split_end": n_train + n_val, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": filepath, | |
| "shuffled_indices": indices, | |
| "split_start": n_train + n_val, | |
| "split_end": n_total, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split=None, shuffled_indices=None, split_start=None, split_end=None): | |
| with open(filepath, encoding="utf-8") as f: | |
| reader = csv.DictReader(f) | |
| rows = list(reader) | |
| if self.config.name in ["raw", "raw_rec"]: | |
| for idx, row in enumerate(rows): | |
| yield idx, row | |
| elif self.config.name == "filtered": | |
| for idx, row in enumerate(rows): | |
| if row["split"] == split: | |
| del row["split"] | |
| yield idx, row | |
| elif self.config.name == "filtered_random": | |
| for global_idx in range(split_start, split_end): | |
| original_idx = shuffled_indices[global_idx] | |
| row = rows[original_idx] | |
| del row["split"] | |
| yield global_idx, row |