Datasets:
Tasks:
Text Classification
Sub-tasks:
hate-speech-detection
Languages:
Portuguese
Size:
1K<n<10K
Tags:
instagram
DOI:
| import pandas as pd | |
| import numpy as np | |
| from skmultilearn.model_selection import iterative_train_test_split | |
| from hatebr import process_row | |
| import json | |
| DATASET_URL = "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv" | |
| def generate_stratified_indexes(df, y_column="offensive_language"): | |
| """Generates stratified train, validation, and test indexes for given DataFrame. | |
| Args: | |
| df: A pandas DataFrame. | |
| y_column: A string indicating the name of the column representing the target variable (default: "offensive_language"). | |
| Returns: | |
| A tuple of numpy arrays containing the train, validation, and test indexes for the input DataFrame: | |
| X_train_indexes: An array of indexes representing the train data. | |
| X_dev_indexes: An array of indexes representing the validation data. | |
| X_test_indexes: An array of indexes representing the test data. | |
| y_train_indexes: An array of indexes representing the train target values. | |
| y_dev_indexes: An array of indexes representing the validation target values. | |
| y_test_indexes: An array of indexes representing the test target values. | |
| """ | |
| records = df.to_dict("records") | |
| processed_records = [ process_row(row, None) for row in records ] | |
| processed_df = pd.DataFrame(processed_records) | |
| y = processed_df[[y_column]].to_numpy().astype(np.int32) | |
| indices = np.arange(y.shape[0]) | |
| indices = indices.reshape(indices.shape[0], 1) | |
| y = np.append(y, indices, axis=1) | |
| processed_df.drop(columns=[y_column], inplace=True) | |
| X = processed_df.to_numpy().astype(np.int32) | |
| X = np.append(X, indices, axis=1) | |
| X_train_dev, y_train_dev, X_test, y_test = iterative_train_test_split(X, y, test_size = 0.2) | |
| X_train, y_train, X_dev, y_dev = iterative_train_test_split(X_train_dev, y_train_dev, test_size = 0.2) | |
| X_train_indexes = X_train[:, -1] | |
| X_dev_indexes = X_dev[:, -1] | |
| X_test_indexes = X_test[:, -1] | |
| y_train_indexes = y_train[:, -1] | |
| y_dev_indexes = y_dev[:, -1] | |
| y_test_indexes = y_test[:, -1] | |
| return X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes | |
| def main(): | |
| df = pd.read_csv(DATASET_URL) | |
| df.drop(columns=["instagram_comments"], inplace=True) | |
| X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes = generate_stratified_indexes(df) | |
| final_indexes = { | |
| "train": [int(x) for x in X_train_indexes], | |
| "validation": [int(x) for x in X_dev_indexes], | |
| "test": [int(x) for x in X_test_indexes] | |
| } | |
| with open("indexes.json", "w") as f: | |
| json.dump(final_indexes, f) | |
| if __name__ == "__main__": | |
| main() |