File size: 2,041 Bytes
aed16e4
ac94c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aed16e4
ac94c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
language:
- zu
- xh
- nr
- nso
- st
- ss
- tn
- ts
- ve
license: mit
task_categories:
- automatic-speech-recognition
pretty_name: isiZulu ASR Augmented Dataset
size_categories:
- 1K<n<10K
---

# isiZulu Speech Recognition Augmented Dataset - SpecAugment

## Dataset Description

This dataset contains augmented speech recordings and transcriptions for isiZulu, one of South Africa's official languages.
The dataset has been optimized for use with OpenAI's Whisper ASR models.

## Dataset Statistics

- **Number of samples**: 635
- **Language**: isiZulu (Zul)
- **Audio format**: WAV, 16kHz, mono, 16-bit
- **Maximum duration**: 30 seconds (truncated for Whisper compatibility)
- **Transcription format**: Cleaned text (lowercase, no punctuation)

## Audio Processing

All audio files have been processed with the following optimizations:
- Resampled to 16kHz (Whisper's native sample rate)
- Converted to mono
- Truncated to maximum 30 seconds
- 16-bit PCM encoding

## Transcription Cleaning

Transcriptions have been cleaned:
- Converted to lowercase
- Removed all punctuation
- Removed POS markers (e.g., [n], [v])
- Normalized whitespace

## Dataset Structure

Each sample contains:
- `audio`: Audio file path and array
- `transcription`: Cleaned transcription text
- `file_id`: Unique identifier for the recording
- `subfolder`: Original subfolder location

## Usage

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("zionia/isizulu-lwazi-asr-specaugment")

# Access samples
print(dataset['train'][0])
```

## Citation

If you use this dataset, please cite the original Lwazi corpus:

```
@inproceedings{lwazi2011,
  title={The Lwazi corpus: an African speech resource},
  author={Barnard, E. and Davel, M. H. and Van Heerden, C.},
  booktitle={Proceedings of the 22nd Annual Symposium of the Pattern Recognition Association of South Africa},
  year={2011}
}
```

## License

This dataset is released under the MIT License.

## Language

isiZulu is a language spoken primarily in South Africa.