distillabs commited on
Commit
53557f6
·
verified ·
1 Parent(s): 095227f

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GENERAL TERMS AND CONDITIONS
2
+
3
+ Note that if you want to use the Commercial licence, please contact us at [email protected]
4
+
5
+ - Model License Terms -
6
+
7
+ R&D License
8
+
9
+ 1. SERVICES, PRICES AND PAYMENT
10
+
11
+ 1.1 The Customer pays a one-time license fee, as indicated in the check-out process, for running of one (1) training process of the selected Base Model using Customer Data (“License Fee”).
12
+
13
+ 1.2 The License Fee shall be due for payment in advance. The Customer shall only be permitted to set off against payment claims of Distil Labs if the Customer’s claims are undisputed or have become res judicata.
14
+
15
+ 2. MODEL LICENSE: R&D LICENSE
16
+
17
+ 2.1 Subject to Customer’s payment of the license fee, Distil Labs grants to Customer the Model License (as defined below). For clarification, Distil Labs retains any other rights in its software or know- how, in particular in the codebase needed for the fine-tuning of the Trained Model.
18
+
19
+ 2.2 Subject to the requirements of the Base Model License (cf. Section 2.5 below), Distil Labs transfers to the Customer the perpetual, non-exclusive usage right to the Trained Model for non-commercial purposes of prototyping and research & development. The Parties agree, that commercial purposes include deployment in production externally (to be used by Customer’s customers paid or free of charge) or internally (as a tool for Customer’s employees). The territorial scope of the license is limited to the use within the United States of America and the European Economic Area including all member states of the European Union (“Model License”).
20
+
21
+ 2.3 The Model License for non-commercial purposes of prototyping and research & development shall include (i) the non-exclusive right to permanent or temporary reproduction, in whole or in part, by any means and in any form (e.g. permanent and/or volatile storage on electrical, electromagnetic, optical storage media, such as any type of SDD, HDD, DVD, memory cards, USB sticks), (ii) the non-exclusive right to distribution in any form, media and by any means regardless of whether the distribution is in tangible or intangible form, in particular to transmit the Trained Model via wired and wireless networks (e.g. for download from internet or intranet by wire or wireless means including broadband, cable, fiberglass, WIFI, LTE, 5G, satellite internet, other data networks), and (iii) the non-exclusive right of making available to the public in such a way that members of the public can access it from places and at times of their choice (e.g. by web or mobile app, virtual or augmented reality, cloud storage, cloud hosting, decentralized hosting, non-fungible token, application service providing, software as a service, or cloud computing). The license shall also contain, to the extent necessary for prototyping and research & development, the right to adapt and modify the Trained Model subject to the limitation in Section 2.4 and 2.5 below, to further develop the Trained Model including changes to functions or appearance, adapt to other software versions, to exchange parts of the Trained Model or combine the Trained Model with other results of work and to use the results in the same way as the original Trained Model. Any derived models from the Trained Model shall retain this model license.
22
+
23
+ 2.4 The Customer shall not, without the prior written consent of Distil Labs:
24
+
25
+ 2.4.1 train, fine-tune, re-train, or otherwise modify the Trained Model, unless for purpose of research & development;
26
+
27
+ 2.4.2 use the Trained Model or any part thereof to create derivative models or services that compete with those of Distil Labs;
28
+
29
+ 2.4.3 circumvent any technical restrictions embedded in the Trained Model or Base Model that are designed to enforce usage limitations.
30
+
31
+ 2.5 The Parties acknowledge and agree that the Trained Model is developed from Base Models which are supplied by a third party. Therefore, the Model License is subject to the restrictions resulting from the open-source or any other applicable license of the Base Model (“Base Model License”) and the Customer must use the Trained Model in compliance with the Base Model License. In particular, the Customer must oblige their clients to compliance with the Base Model License in any case of transferring or sublicensing the rights to or making available in any way the Trained Model. The applicable Base Model License is defined in the Training Configuration and will be provided for download. The Customer agrees to indemnify Distil Labs for any and all claims brought by the Base Model provider for violations of the Base Model License.
Modelfile ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ FROM .
3
+
4
+ TEMPLATE """{{- if .Messages }}
5
+ {{- range $index, $_ := .Messages }}
6
+ {{- if eq .Role "system" }}<|begin_of_text|><|start_header_id|>system<|end_header_id|>
7
+
8
+ Cutting Knowledge Date: December 2023
9
+
10
+ {{- if $.Tools }}{{- end }}
11
+
12
+ {{ .Content }}<|eot_id|>
13
+ {{- else if eq .Role "user" }}<|start_header_id|>user<|end_header_id|>
14
+
15
+ {{ .Content }}<|eot_id|>
16
+ {{- else if eq .Role "assistant" }}<|start_header_id|>assistant<|end_header_id|>
17
+
18
+ {{ .Content }}<|eot_id|>
19
+ {{- end }}
20
+ {{- end }}<|start_header_id|>assistant<|end_header_id|>
21
+ {{- end }}"""
README.md CHANGED
@@ -1,3 +1,168 @@
1
- ---
2
- license: llama3.2
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.2
3
+ base_model: meta-llama/Llama-3.2-3B-Instruct
4
+ tags:
5
+ - function-calling
6
+ - tool-use
7
+ - git
8
+ - cli
9
+ - code-assistant
10
+ - distillation
11
+ - llama
12
+ datasets:
13
+ - distil-labs/gitara-synthetic
14
+ language:
15
+ - en
16
+ library_name: transformers
17
+ pipeline_tag: text-generation
18
+ ---
19
+
20
+ # Llama-3.2-Gitara-3B
21
+
22
+ *Gitara = **git** + **ara** (the parrot genus): your local stochastic parrot for git commands.*
23
+
24
+ A 3B parameter function-calling model fine-tuned by [Distil Labs](https://distillabs.ai) to translate plain English into `git` commands. Optimized to run locally via Ollama with strong tool-calling accuracy that matches models 40x larger.
25
+
26
+ **[GitHub Demo and Code](https://github.com/distil-labs/distil-gitara)**
27
+
28
+ ## Model Details
29
+
30
+ | | |
31
+ |---|---|
32
+ | **Developed by** | [Distil Labs GmbH](https://distillabs.ai) |
33
+ | **Model type** | Causal language model, fine-tuned for function calling |
34
+ | **Language** | English |
35
+ | **License** | [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) |
36
+ | **Fine-tuned from** | [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) |
37
+
38
+ ## Use Case
39
+
40
+ Given a natural language description of a git operation, the model outputs a structured JSON tool call that can be converted to an executable git command.
41
+
42
+ **Supported commands:** `status` · `add` · `commit` · `push` · `pull` · `branch` · `switch` · `restore` · `merge` · `stash` · `rebase` · `reset` · `log`
43
+
44
+ ### Example
45
+
46
+ **Input:**
47
+ ```
48
+ push feature-x to origin, override any changes there and track it
49
+ ```
50
+
51
+ **Output:**
52
+ ```json
53
+ {"name": "git_push", "parameters": {"remote": "origin", "branch": "feature-x", "force": true, "set_upstream": true}}
54
+ ```
55
+
56
+ **Resulting command:**
57
+ ```bash
58
+ git push origin feature-x --force --set-upstream
59
+ ```
60
+
61
+ ### More Examples
62
+
63
+ | Query | Tool Call Output |
64
+ |-------|------------------|
65
+ | `what's in the latest stash, show diff` | `{"name": "git_stash", "parameters": {"action": "show", "patch": true}}` |
66
+ | `undo last commit but keep the changes` | `{"name": "git_reset", "parameters": {"mode": "soft", "ref": "HEAD~1"}}` |
67
+ | `show 8 commits for current branch with graph` | `{"name": "git_log", "parameters": {"limit": 8, "graph": true}}` |
68
+ | `merge vendor branch preferring ours` | `{"name": "git_merge", "parameters": {"branch": "vendor", "strategy": "ours"}}` |
69
+
70
+ ## Training
71
+
72
+ The model was trained using knowledge distillation from the teacher model GPT-OSS-120B.
73
+
74
+ | | |
75
+ |---|---|
76
+ | **Training method** | LoRA fine-tuning |
77
+ | **Seed examples** | ~100 (manually validated) |
78
+ | **Synthetic examples** | 10,000 |
79
+ | **Teacher model** | GPT-OSS-120B |
80
+
81
+ ### Training Process
82
+
83
+ 1. Created ~100 seed examples covering all 13 git commands with realistic query phrasings
84
+ 2. Expanded seed data to 10,000 synthetic training examples using the Distil Labs platform
85
+ 3. Fine-tuned Llama 3.2 3B Instruct using LoRA
86
+ 4. Validated on held-out test set
87
+
88
+ Training data and configuration available in the [GitHub repository](https://github.com/distil-labs/distil-gitara/tree/main/finetuning).
89
+
90
+ ## Evaluation
91
+
92
+ Evaluated on 50 held-out test examples. Accuracy is measured by parsing outputs into normalized Python dicts and comparing for structural equality.
93
+
94
+ | Model | Parameters | Accuracy |
95
+ |-------|------------|----------|
96
+ | GPT-OSS-120B (teacher) | 120B | 0.92 ± 0.02 |
97
+ | **Llama 3.2 3B Instruct (tuned)** | **3B** | **0.92 ± 0.01** |
98
+ | Llama 3.2 1B Instruct (tuned) | 1B | 0.90 ± 0.01 |
99
+ | Llama 3.2 3B Instruct (base) | 3B | 0.12 ± 0.05 |
100
+ | Llama 3.2 1B Instruct (base) | 1B | 0.00 ± 0.01 |
101
+
102
+ The tuned 3B model matches the 120B teacher while being **40x smaller**. The base model achieves only 0.12 accuracy, confirming that fine-tuning is essential for this task.
103
+
104
+ ## How to Use
105
+
106
+ ### With Ollama (Recommended)
107
+
108
+ ```bash
109
+ # Download model
110
+ huggingface-cli download distil-labs/Distil-gitara-v2-Llama-3.2-3B-Instruct --local-dir distil-model
111
+
112
+ # Build with Ollama
113
+ cd distil-model
114
+ ollama create gitara -f Modelfile
115
+
116
+ # Run
117
+ ollama run gitara "show staged changes with diffs"
118
+ ```
119
+
120
+ ### With Transformers
121
+
122
+ ```python
123
+ from transformers import AutoModelForCausalLM, AutoTokenizer
124
+
125
+ model_id = "distil-labs/Distil-gitara-v2-Llama-3.2-3B-Instruct"
126
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
127
+ model = AutoModelForCausalLM.from_pretrained(model_id)
128
+
129
+ # See GitHub repo for full tool-calling implementation
130
+ ```
131
+
132
+ For complete usage instructions, see the [GitHub repository](https://github.com/distil-labs/distil-gitara).
133
+
134
+ ## Inference Speed
135
+
136
+ On an M4 MacBook Pro, most queries return in under 2 seconds once the model is loaded.
137
+
138
+ ## Limitations
139
+
140
+ - Accuracy is 0.92, meaning approximately 1 in 12 queries may produce incorrect output
141
+ - Limited to the 13 supported git commands and their common options
142
+ - Does not support `git checkout` (use `switch` and `restore` instead)
143
+ - Single-turn only; does not support multi-step workflows
144
+
145
+ ## Model Sources
146
+
147
+ | | |
148
+ |---|---|
149
+ | **Homepage** | [https://distillabs.ai](https://distillabs.ai) |
150
+ | **Repository** | [https://github.com/distil-labs/distil-gitara](https://github.com/distil-labs/distil-gitara) |
151
+ | **Blog post** | [https://distillabs.ai/blog/gitara](https://distillabs.ai/blog/gitara) |
152
+ | **Contact** | [[email protected]](mailto:[email protected]) |
153
+
154
+ ## Related Models
155
+
156
+ - [Llama-3.2-Gitara-1B](https://huggingface.co/distil-labs/Llama-3_2-gitara-1B) — Smaller variant (0.90 accuracy)
157
+
158
+ ## Citation
159
+
160
+ ```bibtex
161
+ @misc{gitara2025,
162
+ author = {Distil Labs},
163
+ title = {Gitara: A Function-Calling Git Agent},
164
+ year = {2025},
165
+ publisher = {Hugging Face},
166
+ url = {https://huggingface.co/distil-labs/Llama-3_2-gitara-3B}
167
+ }
168
+ ```
STUDENT_LICENSE ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LLAMA 3.2 COMMUNITY LICENSE AGREEMENT
2
+ Llama 3.2 Version Release Date: September 25, 2024
3
+
4
+ “Agreement” means the terms and conditions for use, reproduction, distribution
5
+ and modification of the Llama Materials set forth herein.
6
+
7
+ “Documentation” means the specifications, manuals and documentation accompanying Llama 3.2
8
+ distributed by Meta at https://llama.meta.com/doc/overview.
9
+
10
+ “Licensee” or “you” means you, or your employer or any other person or entity (if you are
11
+ entering into this Agreement on such person or entity’s behalf), of the age required under
12
+ applicable laws, rules or regulations to provide legal consent and that has legal authority
13
+ to bind your employer or such other person or entity if you are entering in this Agreement
14
+ on their behalf.
15
+
16
+ “Llama 3.2” means the foundational large language models and software and algorithms, including
17
+ machine-learning model code, trained model weights, inference-enabling code, training-enabling code,
18
+ fine-tuning enabling code and other elements of the foregoing distributed by Meta at
19
+ https://www.llama.com/llama-downloads.
20
+
21
+ “Llama Materials” means, collectively, Meta’s proprietary Llama 3.2 and Documentation (and
22
+ any portion thereof) made available under this Agreement.
23
+
24
+ “Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or,
25
+ if you are an entity, your principal place of business is in the EEA or Switzerland)
26
+ and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).
27
+
28
+
29
+ By clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials,
30
+ you agree to be bound by this Agreement.
31
+
32
+
33
+ 1. License Rights and Redistribution.
34
+
35
+ a. Grant of Rights. You are granted a non-exclusive, worldwide,
36
+ non-transferable and royalty-free limited license under Meta’s intellectual property or other rights
37
+ owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works
38
+ of, and make modifications to the Llama Materials.
39
+
40
+ b. Redistribution and Use.
41
+
42
+ i. If you distribute or make available the Llama Materials (or any derivative works thereof),
43
+ or a product or service (including another AI model) that contains any of them, you shall (A) provide
44
+ a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama”
45
+ on a related website, user interface, blogpost, about page, or product documentation. If you use the
46
+ Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or
47
+ otherwise improve an AI model, which is distributed or made available, you shall also include “Llama”
48
+ at the beginning of any such AI model name.
49
+
50
+ ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part
51
+ of an integrated end user product, then Section 2 of this Agreement will not apply to you.
52
+
53
+ iii. You must retain in all copies of the Llama Materials that you distribute the
54
+ following attribution notice within a “Notice” text file distributed as a part of such copies:
55
+ “Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,
56
+ Inc. All Rights Reserved.”
57
+
58
+ iv. Your use of the Llama Materials must comply with applicable laws and regulations
59
+ (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for
60
+ the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby
61
+ incorporated by reference into this Agreement.
62
+
63
+ 2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users
64
+ of the products or services made available by or for Licensee, or Licensee’s affiliates,
65
+ is greater than 700 million monthly active users in the preceding calendar month, you must request
66
+ a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to
67
+ exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.
68
+
69
+ 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND
70
+ RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS
71
+ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES
72
+ OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
73
+ FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED
74
+ WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
75
+
76
+ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,
77
+ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT,
78
+ FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
79
+ IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
80
+
81
+ 5. Intellectual Property.
82
+
83
+ a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials,
84
+ neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates,
85
+ except as required for reasonable and customary use in describing and redistributing the Llama Materials or as
86
+ set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required
87
+ to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible
88
+ at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark
89
+ will inure to the benefit of Meta.
90
+
91
+ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any
92
+ derivative works and modifications of the Llama Materials that are made by you, as between you and Meta,
93
+ you are and will be the owner of such derivative works and modifications.
94
+
95
+ c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or
96
+ counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion
97
+ of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable
98
+ by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or
99
+ claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third
100
+ party arising out of or related to your use or distribution of the Llama Materials.
101
+
102
+ 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access
103
+ to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms
104
+ and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this
105
+ Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3,
106
+ 4 and 7 shall survive the termination of this Agreement.
107
+
108
+ 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of
109
+ California without regard to choice of law principles, and the UN Convention on Contracts for the International
110
+ Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of
111
+ any dispute arising out of this Agreement.
TEACHER_LICENSE ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2025 OpenAI
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
chat_template.jinja ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- if strftime_now is defined %}
10
+ {%- set date_string = strftime_now("%d %b %Y") %}
11
+ {%- else %}
12
+ {%- set date_string = "26 Jul 2024" %}
13
+ {%- endif %}
14
+ {%- endif %}
15
+ {%- if not tools is defined %}
16
+ {%- set tools = none %}
17
+ {%- endif %}
18
+
19
+ {#- This block extracts the system message, so we can slot it into the right place. #}
20
+ {%- if messages[0]['role'] == 'system' %}
21
+ {%- set system_message = messages[0]['content']|trim %}
22
+ {%- set messages = messages[1:] %}
23
+ {%- else %}
24
+ {%- set system_message = "" %}
25
+ {%- endif %}
26
+
27
+ {#- System message #}
28
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
29
+ {%- if tools is not none %}
30
+ {{- "Environment: ipython\n" }}
31
+ {%- endif %}
32
+ {{- "Cutting Knowledge Date: December 2023\n" }}
33
+ {{- "Today Date: " + date_string + "\n\n" }}
34
+ {%- if tools is not none and not tools_in_user_message %}
35
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
36
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
37
+ {{- "Do not use variables.\n\n" }}
38
+ {%- for t in tools %}
39
+ {{- t | tojson(indent=4) }}
40
+ {{- "\n\n" }}
41
+ {%- endfor %}
42
+ {%- endif %}
43
+ {{- system_message }}
44
+ {{- "<|eot_id|>" }}
45
+
46
+ {#- Custom tools are passed in a user message with some extra guidance #}
47
+ {%- if tools_in_user_message and not tools is none %}
48
+ {#- Extract the first user message so we can plug it in here #}
49
+ {%- if messages | length != 0 %}
50
+ {%- set first_user_message = messages[0]['content']|trim %}
51
+ {%- set messages = messages[1:] %}
52
+ {%- else %}
53
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
54
+ {%- endif %}
55
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
56
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
57
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
58
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
59
+ {{- "Do not use variables.\n\n" }}
60
+ {%- for t in tools %}
61
+ {{- t | tojson(indent=4) }}
62
+ {{- "\n\n" }}
63
+ {%- endfor %}
64
+ {{- first_user_message + "<|eot_id|>"}}
65
+ {%- endif %}
66
+
67
+ {%- for message in messages %}
68
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
69
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
70
+ {%- elif 'tool_calls' in message %}
71
+ {%- if not message.tool_calls|length == 1 %}
72
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
73
+ {%- endif %}
74
+ {%- set tool_call = message.tool_calls[0].function %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- '{"name": "' + tool_call.name + '", ' }}
77
+ {{- '"parameters": ' }}
78
+ {{- tool_call.arguments | tojson }}
79
+ {{- "}" }}
80
+ {{- "<|eot_id|>" }}
81
+ {%- elif message.role == "tool" or message.role == "ipython" %}
82
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
83
+ {%- if message.content is mapping or message.content is iterable %}
84
+ {{- message.content | tojson }}
85
+ {%- else %}
86
+ {{- message.content }}
87
+ {%- endif %}
88
+ {{- "<|eot_id|>" }}
89
+ {%- endif %}
90
+ {%- endfor %}
91
+ {%- if add_generation_prompt %}
92
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
93
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": [
9
+ 128001,
10
+ 128008,
11
+ 128009
12
+ ],
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 3072,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 8192,
18
+ "max_position_embeddings": 131072,
19
+ "mlp_bias": false,
20
+ "model_type": "llama",
21
+ "num_attention_heads": 24,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 8,
24
+ "pad_token": "<|reserved_special_token_247|>",
25
+ "pad_token_id": 128255,
26
+ "pretraining_tp": 1,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": {
29
+ "factor": 32.0,
30
+ "high_freq_factor": 4.0,
31
+ "low_freq_factor": 1.0,
32
+ "original_max_position_embeddings": 8192,
33
+ "rope_type": "llama3"
34
+ },
35
+ "rope_theta": 500000.0,
36
+ "tie_word_embeddings": true,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.53.0",
39
+ "use_cache": true,
40
+ "vocab_size": 128256
41
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.53.0"
12
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9cab70999f11cc113a31bda8ed359c7e448051bccdd35b1bb7364c254552cba
3
+ size 4965799096
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc02d47a2ebc7fde8f467402644876caeb791765f92aa626184643f11b59956
3
+ size 1459729952
model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 3212749824,
4
+ "total_size": 6425499648
5
+ },
6
+ "weight_map": {
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.norm.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|reserved_special_token_247|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c82407ee10fa3777e08252308fce60fcca3e2ff2fb980acdca6c8c5bdd8470c0
3
+ size 17210206
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "clean_up_tokenization_spaces": true,
2054
+ "eos_token": "<|eot_id|>",
2055
+ "extra_special_tokens": {},
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "pad_token": "<|reserved_special_token_247|>",
2062
+ "padding_side": "left",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
training-logs.csv ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,eval_loss,eval_rouge,eval_tool_call_equivalence,eval_binary_tool_call,eval_staged_tool_call,eval_runtime,eval_samples_per_second,eval_steps_per_second,epoch,step,loss,grad_norm,learning_rate,train_runtime,train_samples_per_second,train_steps_per_second,total_flos,train_loss
2
+ 0,0.5440704226493835,0.813280867620571,0.0,0.0,0.09267241379310345,19.2946,6.012,6.012,0.0,0,,,,,,,,
3
+ 1,,,,,,,,,0.024833614780967517,250,0.2831,1.8876779079437256,6.181727904667329e-06,,,,,
4
+ 2,,,,,,,,,0.04966722956193503,500,0.1295,0.338127464056015,1.2388282025819265e-05,,,,,
5
+ 3,,,,,,,,,0.07450084434290255,750,0.0832,2.980621337890625,1.8594836146971203e-05,,,,,
6
+ 4,,,,,,,,,0.09933445912387007,1000,0.0862,1.5693479776382446,2.480139026812314e-05,,,,,
7
+ 5,,,,,,,,,0.12416807390483758,1250,0.0762,0.027265004813671112,3.100794438927508e-05,,,,,
8
+ 6,,,,,,,,,0.1490016886858051,1500,0.0828,0.514475405216217,3.7214498510427016e-05,,,,,
9
+ 7,,,,,,,,,0.17383530346677262,1750,0.0658,0.15089400112628937,4.342105263157895e-05,,,,,
10
+ 8,,,,,,,,,0.19866891824774013,2000,0.0598,0.5703575611114502,4.962760675273089e-05,,,,,
11
+ 9,,,,,,,,,0.22350253302870765,2250,0.0708,0.056972213089466095,4.9692842578553875e-05,,,,,
12
+ 10,,,,,,,,,0.24833614780967517,2500,0.0665,0.7637225985527039,4.936607936424949e-05,,,,,
13
+ 11,,,,,,,,,0.2731697625906427,2750,0.059,0.040585942566394806,4.9039316149945107e-05,,,,,
14
+ 12,,,,,,,,,0.2980033773716102,3000,0.0693,0.1668844372034073,4.871255293564072e-05,,,,,
15
+ 13,,,,,,,,,0.3228369921525777,3250,0.0565,0.10294416546821594,4.838578972133633e-05,,,,,
16
+ 14,,,,,,,,,0.34767060693354523,3500,0.0506,0.11268851906061172,4.805902650703194e-05,,,,,
17
+ 15,,,,,,,,,0.37250422171451275,3750,0.0513,0.10253278911113739,4.7732263292727555e-05,,,,,
18
+ 16,,,,,,,,,0.39733783649548027,4000,0.0693,0.2975004315376282,4.7405500078423174e-05,,,,,
19
+ 17,,,,,,,,,0.4221714512764478,4250,0.0631,0.3521268367767334,4.7078736864118786e-05,,,,,
20
+ 18,,,,,,,,,0.4470050660574153,4500,0.0524,0.09991472214460373,4.67519736498144e-05,,,,,
21
+ 19,,,,,,,,,0.4718386808383828,4750,0.0497,0.47913551330566406,4.642521043551001e-05,,,,,
22
+ 20,,,,,,,,,0.49667229561935033,5000,0.0608,0.33468183875083923,4.609844722120562e-05,,,,,
23
+ 21,,,,,,,,,0.5215059104003179,5250,0.055,0.09027048945426941,4.577168400690124e-05,,,,,
24
+ 22,,,,,,,,,0.5463395251812854,5500,0.054,0.13943059742450714,4.5444920792596854e-05,,,,,
25
+ 23,,,,,,,,,0.5711731399622529,5750,0.0406,0.0854761004447937,4.5118157578292466e-05,,,,,
26
+ 24,,,,,,,,,0.5960067547432204,6000,0.0481,0.111760213971138,4.479139436398808e-05,,,,,
27
+ 25,,,,,,,,,0.620840369524188,6250,0.0609,0.04458677023649216,4.44646311496837e-05,,,,,
28
+ 26,,,,,,,,,0.6456739843051554,6500,0.0479,0.12187466770410538,4.413786793537931e-05,,,,,
29
+ 27,,,,,,,,,0.670507599086123,6750,0.0451,3.4808528423309326,4.381110472107492e-05,,,,,
30
+ 28,,,,,,,,,0.6953412138670905,7000,0.057,0.25530803203582764,4.3484341506770534e-05,,,,,
31
+ 29,,,,,,,,,0.720174828648058,7250,0.0496,0.051751758903265,4.315757829246615e-05,,,,,
32
+ 30,,,,,,,,,0.7450084434290255,7500,0.0408,0.03296246379613876,4.2830815078161765e-05,,,,,
33
+ 31,,,,,,,,,0.7698420582099931,7750,0.0464,0.10649354010820389,4.250405186385738e-05,,,,,
34
+ 32,,,,,,,,,0.7946756729909605,8000,0.0616,0.13781298696994781,4.217728864955299e-05,,,,,
35
+ 33,,,,,,,,,0.8195092877719281,8250,0.0547,0.10254058986902237,4.185052543524861e-05,,,,,
36
+ 34,,,,,,,,,0.8443429025528956,8500,0.0471,6.931997299194336,4.152376222094422e-05,,,,,
37
+ 35,,,,,,,,,0.8691765173338631,8750,0.0565,0.2139468491077423,4.119699900663983e-05,,,,,
38
+ 36,,,,,,,,,0.8940101321148306,9000,0.0473,0.10283464938402176,4.0870235792335445e-05,,,,,
39
+ 37,,,,,,,,,0.9188437468957982,9250,0.054,0.09672541171312332,4.054347257803106e-05,,,,,
40
+ 38,,,,,,,,,0.9436773616767656,9500,0.0486,0.05630887672305107,4.0216709363726676e-05,,,,,
41
+ 39,,,,,,,,,0.9685109764577332,9750,0.0533,0.40512004494667053,3.988994614942229e-05,,,,,
42
+ 40,,,,,,,,,0.9933445912387007,10000,0.0404,0.14147664606571198,3.95631829351179e-05,,,,,
43
+ 41,0.04303819313645363,0.9863006978372092,0.8706896551724138,0.8620689655172413,0.9030172413793104,19.6728,5.896,5.896,1.0,10067,,,,,,,,
44
+ 42,,,,,,,,,1.0181782060196682,10250,0.0422,0.05195777490735054,3.923641972081351e-05,,,,,
45
+ 43,,,,,,,,,1.0430118208006358,10500,0.0377,0.3211573660373688,3.8909656506509125e-05,,,,,
46
+ 44,,,,,,,,,1.0678454355816032,10750,0.0468,0.21932737529277802,3.858289329220474e-05,,,,,
47
+ 45,,,,,,,,,1.0926790503625707,11000,0.0431,0.21042978763580322,3.8256130077900356e-05,,,,,
48
+ 46,,,,,,,,,1.1175126651435383,11250,0.0434,2.698422431945801,3.792936686359597e-05,,,,,
49
+ 47,,,,,,,,,1.1423462799245059,11500,0.0422,0.23299817740917206,3.760260364929158e-05,,,,,
50
+ 48,,,,,,,,,1.1671798947054732,11750,0.0472,0.054361678659915924,3.727584043498719e-05,,,,,
51
+ 49,,,,,,,,,1.1920135094864408,12000,0.0449,0.05255759134888649,3.6949077220682805e-05,,,,,
52
+ 50,,,,,,,,,1.2168471242674084,12250,0.0383,0.06627514958381653,3.6622314006378424e-05,,,,,
53
+ 51,,,,,,,,,1.241680739048376,12500,0.0393,0.12048480659723282,3.6295550792074036e-05,,,,,
54
+ 52,,,,,,,,,1.2665143538293435,12750,0.044,0.27852773666381836,3.596878757776965e-05,,,,,
55
+ 53,,,,,,,,,1.2913479686103109,13000,0.0439,0.08602070063352585,3.564202436346526e-05,,,,,
56
+ 54,,,,,,,,,1.3161815833912784,13250,0.0403,0.4457266628742218,3.531526114916087e-05,,,,,
57
+ 55,,,,,,,,,1.341015198172246,13500,0.0369,0.2941795885562897,3.4988497934856485e-05,,,,,
58
+ 56,,,,,,,,,1.3658488129532134,13750,0.0338,0.041989922523498535,3.4661734720552104e-05,,,,,
59
+ 57,,,,,,,,,1.390682427734181,14000,0.0465,0.08860991150140762,3.4334971506247716e-05,,,,,
60
+ 58,,,,,,,,,1.4155160425151485,14250,0.0473,0.27248501777648926,3.400820829194333e-05,,,,,
61
+ 59,,,,,,,,,1.440349657296116,14500,0.0465,0.038461316376924515,3.368144507763894e-05,,,,,
62
+ 60,,,,,,,,,1.4651832720770837,14750,0.0393,0.4601438045501709,3.335468186333455e-05,,,,,
63
+ 61,,,,,,,,,1.490016886858051,15000,0.0383,0.3925597071647644,3.302791864903017e-05,,,,,
64
+ 62,,,,,,,,,1.5148505016390186,15250,0.0414,0.07100195437669754,3.2701155434725784e-05,,,,,
65
+ 63,,,,,,,,,1.5396841164199861,15500,0.0461,0.05344737321138382,3.2374392220421396e-05,,,,,
66
+ 64,,,,,,,,,1.5645177312009535,15750,0.0517,0.0649423599243164,3.204762900611701e-05,,,,,
67
+ 65,,,,,,,,,1.589351345981921,16000,0.0362,0.07531578093767166,3.172086579181262e-05,,,,,
68
+ 66,,,,,,,,,1.6141849607628886,16250,0.0393,0.3943573832511902,3.139410257750824e-05,,,,,
69
+ 67,,,,,,,,,1.6390185755438562,16500,0.0368,0.12510797381401062,3.106733936320385e-05,,,,,
70
+ 68,,,,,,,,,1.6638521903248238,16750,0.0411,0.044801265001297,3.0740576148899464e-05,,,,,
71
+ 69,,,,,,,,,1.6886858051057914,17000,0.0443,0.042716626077890396,3.0413812934595076e-05,,,,,
72
+ 70,,,,,,,,,1.7135194198867587,17250,0.0464,0.06397116929292679,3.0087049720290688e-05,,,,,
73
+ 71,,,,,,,,,1.7383530346677263,17500,0.0453,0.06428167223930359,2.97602865059863e-05,,,,,
74
+ 72,,,,,,,,,1.7631866494486936,17750,0.04,0.18687468767166138,2.943352329168192e-05,,,,,
75
+ 73,,,,,,,,,1.7880202642296612,18000,0.0373,0.028365647420287132,2.910676007737753e-05,,,,,
76
+ 74,,,,,,,,,1.8128538790106288,18250,0.0354,0.06167299300432205,2.8779996863073144e-05,,,,,
77
+ 75,,,,,,,,,1.8376874937915963,18500,0.0414,0.3326004445552826,2.8453233648768756e-05,,,,,
78
+ 76,,,,,,,,,1.862521108572564,18750,0.0417,1.3477236032485962,2.8126470434464368e-05,,,,,
79
+ 77,,,,,,,,,1.8873547233535315,19000,0.0439,0.2901188135147095,2.7799707220159987e-05,,,,,
80
+ 78,,,,,,,,,1.9121883381344988,19250,0.041,0.16594459116458893,2.74729440058556e-05,,,,,
81
+ 79,,,,,,,,,1.9370219529154664,19500,0.0361,0.20905549824237823,2.714618079155121e-05,,,,,
82
+ 80,,,,,,,,,1.9618555676964338,19750,0.0436,0.07058268040418625,2.6819417577246824e-05,,,,,
83
+ 81,,,,,,,,,1.9866891824774013,20000,0.0432,2.640181303024292,2.6492654362942436e-05,,,,,
84
+ 82,0.035898368805646896,0.9855189196086762,0.8706896551724138,0.8620689655172413,0.9030172413793104,19.6597,5.9,5.9,2.0,20134,,,,,,,,
85
+ 83,,,,,,,,,2.011522797258369,20250,0.0417,0.1638754904270172,2.616589114863805e-05,,,,,
86
+ 84,,,,,,,,,2.0363564120393365,20500,0.0298,0.036427684128284454,2.5839127934333667e-05,,,,,
87
+ 85,,,,,,,,,2.061190026820304,20750,0.0396,0.38093072175979614,2.551236472002928e-05,,,,,
88
+ 86,,,,,,,,,2.0860236416012716,21000,0.0345,0.04320234805345535,2.518560150572489e-05,,,,,
89
+ 87,,,,,,,,,2.110857256382239,21250,0.0365,0.029463214799761772,2.4858838291420507e-05,,,,,
90
+ 88,,,,,,,,,2.1356908711632063,21500,0.0382,0.0870317742228508,2.453207507711612e-05,,,,,
91
+ 89,,,,,,,,,2.160524485944174,21750,0.0322,0.034489911049604416,2.4205311862811735e-05,,,,,
92
+ 90,,,,,,,,,2.1853581007251415,22000,0.0384,1.6466137170791626,2.3878548648507347e-05,,,,,
93
+ 91,,,,,,,,,2.210191715506109,22250,0.0304,0.0214590635150671,2.3551785434202963e-05,,,,,
94
+ 92,,,,,,,,,2.2350253302870766,22500,0.0344,0.0798802301287651,2.3225022219898575e-05,,,,,
95
+ 93,,,,,,,,,2.259858945068044,22750,0.0402,0.03845512121915817,2.289825900559419e-05,,,,,
96
+ 94,,,,,,,,,2.2846925598490118,23000,0.0331,0.013190597295761108,2.2571495791289802e-05,,,,,
97
+ 95,,,,,,,,,2.3095261746299793,23250,0.0354,0.06865418702363968,2.2244732576985415e-05,,,,,
98
+ 96,,,,,,,,,2.3343597894109465,23500,0.0327,0.016779638826847076,2.191796936268103e-05,,,,,
99
+ 97,,,,,,,,,2.359193404191914,23750,0.0425,0.4578581750392914,2.1591206148376642e-05,,,,,
100
+ 98,,,,,,,,,2.3840270189728816,24000,0.0358,0.03789730742573738,2.1264442934072255e-05,,,,,
101
+ 99,,,,,,,,,2.408860633753849,24250,0.0398,0.5377736687660217,2.093767971976787e-05,,,,,
102
+ 100,,,,,,,,,2.4336942485348168,24500,0.0319,0.089475616812706,2.0610916505463482e-05,,,,,
103
+ 101,,,,,,,,,2.4585278633157843,24750,0.0344,0.04143413156270981,2.0284153291159095e-05,,,,,
104
+ 102,,,,,,,,,2.483361478096752,25000,0.0367,0.22922787070274353,1.995739007685471e-05,,,,,
105
+ 103,,,,,,,,,2.5081950928777195,25250,0.0361,0.05491574481129646,1.9630626862550322e-05,,,,,
106
+ 104,,,,,,,,,2.533028707658687,25500,0.0358,0.29969361424446106,1.9303863648245938e-05,,,,,
107
+ 105,,,,,,,,,2.557862322439654,25750,0.037,0.2669653594493866,1.897710043394155e-05,,,,,
108
+ 106,,,,,,,,,2.5826959372206217,26000,0.0382,0.04662293568253517,1.8650337219637162e-05,,,,,
109
+ 107,,,,,,,,,2.6075295520015893,26250,0.0283,0.05279680714011192,1.8323574005332778e-05,,,,,
110
+ 108,,,,,,,,,2.632363166782557,26500,0.0376,0.02325400710105896,1.799681079102839e-05,,,,,
111
+ 109,,,,,,,,,2.6571967815635245,26750,0.0364,0.02825029566884041,1.7670047576724002e-05,,,,,
112
+ 110,,,,,,,,,2.682030396344492,27000,0.0367,0.1842947155237198,1.7343284362419618e-05,,,,,
113
+ 111,,,,,,,,,2.706864011125459,27250,0.0271,0.04266359284520149,1.701652114811523e-05,,,,,
114
+ 112,,,,,,,,,2.7316976259064267,27500,0.0348,0.47824475169181824,1.6689757933810842e-05,,,,,
115
+ 113,,,,,,,,,2.7565312406873943,27750,0.0419,0.21797581017017365,1.6362994719506458e-05,,,,,
116
+ 114,,,,,,,,,2.781364855468362,28000,0.0333,0.08591750264167786,1.603623150520207e-05,,,,,
117
+ 115,,,,,,,,,2.8061984702493294,28250,0.0358,0.27689918875694275,1.5709468290897686e-05,,,,,
118
+ 116,,,,,,,,,2.831032085030297,28500,0.0364,0.025228355079889297,1.5382705076593298e-05,,,,,
119
+ 117,,,,,,,,,2.8558656998112646,28750,0.0348,0.03178789094090462,1.5055941862288912e-05,,,,,
120
+ 118,,,,,,,,,2.880699314592232,29000,0.0347,0.02953815460205078,1.4729178647984526e-05,,,,,
121
+ 119,,,,,,,,,2.9055329293731997,29250,0.0383,0.0400734581053257,1.440241543368014e-05,,,,,
122
+ 120,,,,,,,,,2.9303665441541673,29500,0.0381,0.08492104709148407,1.4075652219375752e-05,,,,,
123
+ 121,,,,,,,,,2.9552001589351344,29750,0.0391,0.04035452753305435,1.3748889005071367e-05,,,,,
124
+ 122,,,,,,,,,2.980033773716102,30000,0.0301,0.07999414205551147,1.342212579076698e-05,,,,,
125
+ 123,0.03923438489437103,0.9865965058155729,0.8706896551724138,0.8620689655172413,0.9051724137931034,19.7459,5.875,5.875,3.0,30201,,,,,,,,
126
+ 124,,,,,,,,,3.0048673884970696,30250,0.0332,0.03981630876660347,1.3095362576462592e-05,,,,,
127
+ 125,,,,,,,,,3.029701003278037,30500,0.0282,0.031737204641103745,1.2768599362158207e-05,,,,,
128
+ 126,,,,,,,,,3.0545346180590047,30750,0.0338,0.22620955109596252,1.244183614785382e-05,,,,,
129
+ 127,,,,,,,,,3.0793682328399723,31000,0.0361,0.1756877601146698,1.2115072933549433e-05,,,,,
130
+ 128,,,,,,,,,3.10420184762094,31250,0.0308,0.03286482393741608,1.1788309719245047e-05,,,,,
131
+ 129,,,,,,,,,3.129035462401907,31500,0.0324,0.2761674225330353,1.1461546504940661e-05,,,,,
132
+ 130,,,,,,,,,3.1538690771828746,31750,0.0346,0.05723937973380089,1.1134783290636273e-05,,,,,
133
+ 131,,,,,,,,,3.178702691963842,32000,0.0265,0.07764796167612076,1.0808020076331887e-05,,,,,
134
+ 132,,,,,,,,,3.2035363067448097,32250,0.0367,0.06632573157548904,1.0481256862027501e-05,,,,,
135
+ 133,,,,,,,,,3.2283699215257773,32500,0.0338,0.03273621201515198,1.0154493647723115e-05,,,,,
136
+ 134,,,,,,,,,3.253203536306745,32750,0.0318,0.05334993079304695,9.827730433418727e-06,,,,,
137
+ 135,,,,,,,,,3.2780371510877124,33000,0.036,0.11170263588428497,9.500967219114341e-06,,,,,
138
+ 136,,,,,,,,,3.30287076586868,33250,0.0279,0.03641891852021217,9.174204004809955e-06,,,,,
139
+ 137,,,,,,,,,3.3277043806496476,33500,0.0288,0.19195187091827393,8.847440790505567e-06,,,,,
140
+ 138,,,,,,,,,3.3525379954306147,33750,0.0292,0.03422338888049126,8.520677576201181e-06,,,,,
141
+ 139,,,,,,,,,3.3773716102115823,34000,0.0332,0.21290135383605957,8.193914361896795e-06,,,,,
142
+ 140,,,,,,,,,3.40220522499255,34250,0.0313,0.07336108386516571,7.86715114759241e-06,,,,,
143
+ 141,,,,,,,,,3.4270388397735174,34500,0.0342,0.588629424571991,7.540387933288022e-06,,,,,
144
+ 142,,,,,,,,,3.451872454554485,34750,0.0366,1.2232671976089478,7.213624718983636e-06,,,,,
145
+ 143,,,,,,,,,3.4767060693354526,35000,0.0315,0.15566612780094147,6.8868615046792495e-06,,,,,
146
+ 144,,,,,,,,,3.50153968411642,35250,0.0291,0.025047075003385544,6.560098290374863e-06,,,,,
147
+ 145,,,,,,,,,3.5263732988973873,35500,0.0284,0.3008776605129242,6.233335076070477e-06,,,,,
148
+ 146,,,,,,,,,3.551206913678355,35750,0.0308,0.030919678509235382,5.90657186176609e-06,,,,,
149
+ 147,,,,,,,,,3.5760405284593224,36000,0.0265,0.06553468108177185,5.579808647461704e-06,,,,,
150
+ 148,,,,,,,,,3.60087414324029,36250,0.0278,0.07004202157258987,5.253045433157317e-06,,,,,
151
+ 149,,,,,,,,,3.6257077580212576,36500,0.0241,0.05492762103676796,4.92628221885293e-06,,,,,
152
+ 150,,,,,,,,,3.650541372802225,36750,0.0361,0.1254446804523468,4.599519004548544e-06,,,,,
153
+ 151,,,,,,,,,3.6753749875831927,37000,0.032,0.018202638253569603,4.272755790244157e-06,,,,,
154
+ 152,,,,,,,,,3.7002086023641603,37250,0.0342,0.32532799243927,3.945992575939771e-06,,,,,
155
+ 153,,,,,,,,,3.725042217145128,37500,0.0311,0.08499012142419815,3.6192293616353845e-06,,,,,
156
+ 154,,,,,,,,,3.7498758319260954,37750,0.0336,0.29674163460731506,3.2924661473309984e-06,,,,,
157
+ 155,,,,,,,,,3.7747094467070625,38000,0.0286,0.050965480506420135,2.9657029330266114e-06,,,,,
158
+ 156,,,,,,,,,3.79954306148803,38250,0.0287,0.05048535019159317,2.6389397187222253e-06,,,,,
159
+ 157,,,,,,,,,3.8243766762689977,38500,0.0339,0.027750695124268532,2.3121765044178388e-06,,,,,
160
+ 158,,,,,,,,,3.8492102910499653,38750,0.0304,0.032215800136327744,1.9854132901134522e-06,,,,,
161
+ 159,,,,,,,,,3.874043905830933,39000,0.0275,0.17166996002197266,1.6586500758090657e-06,,,,,
162
+ 160,,,,,,,,,3.8988775206119004,39250,0.0299,0.04399380087852478,1.3318868615046794e-06,,,,,
163
+ 161,,,,,,,,,3.9237111353928675,39500,0.0302,0.0341867059469223,1.0051236472002928e-06,,,,,
164
+ 162,,,,,,,,,3.948544750173835,39750,0.0254,0.18957515060901642,6.783604328959064e-07,,,,,
165
+ 163,,,,,,,,,3.9733783649548027,40000,0.0352,0.10965406149625778,3.5159721859151987e-07,,,,,
166
+ 164,,,,,,,,,3.9982119797357702,40250,0.0275,0.022060103714466095,2.4834004287133373e-08,,,,,
167
+ 165,0.04154980555176735,0.9888400955591625,0.8879310344827587,0.8793103448275862,0.9094827586206896,19.2458,6.027,6.027,4.0,40268,,,,,,,,
168
+ 166,,,,,,,,,4.0,40268,,,,18449.6161,2.183,2.183,1.7818233384212152e+18,0.04331518376836879
training-logs.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"eval_loss":0.5440704226,"eval_rouge":0.8132808676,"eval_tool_call_equivalence":0.0,"eval_binary_tool_call":0.0,"eval_staged_tool_call":0.0926724138,"eval_runtime":19.2946,"eval_samples_per_second":6.012,"eval_steps_per_second":6.012,"epoch":0.0,"step":0,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
2
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.0248336148,"step":250,"loss":0.2831,"grad_norm":1.8876779079,"learning_rate":0.0000061817,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
3
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.0496672296,"step":500,"loss":0.1295,"grad_norm":0.3381274641,"learning_rate":0.0000123883,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
4
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.0745008443,"step":750,"loss":0.0832,"grad_norm":2.9806213379,"learning_rate":0.0000185948,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
5
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.0993344591,"step":1000,"loss":0.0862,"grad_norm":1.5693479776,"learning_rate":0.0000248014,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
6
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.1241680739,"step":1250,"loss":0.0762,"grad_norm":0.0272650048,"learning_rate":0.0000310079,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
7
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.1490016887,"step":1500,"loss":0.0828,"grad_norm":0.5144754052,"learning_rate":0.0000372145,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
8
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.1738353035,"step":1750,"loss":0.0658,"grad_norm":0.1508940011,"learning_rate":0.0000434211,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
9
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.1986689182,"step":2000,"loss":0.0598,"grad_norm":0.5703575611,"learning_rate":0.0000496276,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
10
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.223502533,"step":2250,"loss":0.0708,"grad_norm":0.0569722131,"learning_rate":0.0000496928,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
11
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.2483361478,"step":2500,"loss":0.0665,"grad_norm":0.7637225986,"learning_rate":0.0000493661,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
12
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.2731697626,"step":2750,"loss":0.059,"grad_norm":0.0405859426,"learning_rate":0.0000490393,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
13
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.2980033774,"step":3000,"loss":0.0693,"grad_norm":0.1668844372,"learning_rate":0.0000487126,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
14
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.3228369922,"step":3250,"loss":0.0565,"grad_norm":0.1029441655,"learning_rate":0.0000483858,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
15
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.3476706069,"step":3500,"loss":0.0506,"grad_norm":0.1126885191,"learning_rate":0.000048059,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
16
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.3725042217,"step":3750,"loss":0.0513,"grad_norm":0.1025327891,"learning_rate":0.0000477323,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
17
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.3973378365,"step":4000,"loss":0.0693,"grad_norm":0.2975004315,"learning_rate":0.0000474055,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
18
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.4221714513,"step":4250,"loss":0.0631,"grad_norm":0.3521268368,"learning_rate":0.0000470787,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
19
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.4470050661,"step":4500,"loss":0.0524,"grad_norm":0.0999147221,"learning_rate":0.000046752,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
20
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.4718386808,"step":4750,"loss":0.0497,"grad_norm":0.4791355133,"learning_rate":0.0000464252,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
21
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.4966722956,"step":5000,"loss":0.0608,"grad_norm":0.3346818388,"learning_rate":0.0000460984,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
22
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.5215059104,"step":5250,"loss":0.055,"grad_norm":0.0902704895,"learning_rate":0.0000457717,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
23
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.5463395252,"step":5500,"loss":0.054,"grad_norm":0.1394305974,"learning_rate":0.0000454449,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
24
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.57117314,"step":5750,"loss":0.0406,"grad_norm":0.0854761004,"learning_rate":0.0000451182,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
25
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.5960067547,"step":6000,"loss":0.0481,"grad_norm":0.111760214,"learning_rate":0.0000447914,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
26
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.6208403695,"step":6250,"loss":0.0609,"grad_norm":0.0445867702,"learning_rate":0.0000444646,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
27
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.6456739843,"step":6500,"loss":0.0479,"grad_norm":0.1218746677,"learning_rate":0.0000441379,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
28
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.6705075991,"step":6750,"loss":0.0451,"grad_norm":3.4808528423,"learning_rate":0.0000438111,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
29
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.6953412139,"step":7000,"loss":0.057,"grad_norm":0.255308032,"learning_rate":0.0000434843,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
30
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.7201748286,"step":7250,"loss":0.0496,"grad_norm":0.0517517589,"learning_rate":0.0000431576,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
31
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.7450084434,"step":7500,"loss":0.0408,"grad_norm":0.0329624638,"learning_rate":0.0000428308,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
32
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.7698420582,"step":7750,"loss":0.0464,"grad_norm":0.1064935401,"learning_rate":0.0000425041,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
33
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.794675673,"step":8000,"loss":0.0616,"grad_norm":0.137812987,"learning_rate":0.0000421773,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
34
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.8195092878,"step":8250,"loss":0.0547,"grad_norm":0.1025405899,"learning_rate":0.0000418505,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
35
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.8443429026,"step":8500,"loss":0.0471,"grad_norm":6.9319972992,"learning_rate":0.0000415238,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
36
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.8691765173,"step":8750,"loss":0.0565,"grad_norm":0.2139468491,"learning_rate":0.000041197,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
37
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.8940101321,"step":9000,"loss":0.0473,"grad_norm":0.1028346494,"learning_rate":0.0000408702,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
38
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.9188437469,"step":9250,"loss":0.054,"grad_norm":0.0967254117,"learning_rate":0.0000405435,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
39
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.9436773617,"step":9500,"loss":0.0486,"grad_norm":0.0563088767,"learning_rate":0.0000402167,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
40
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.9685109765,"step":9750,"loss":0.0533,"grad_norm":0.4051200449,"learning_rate":0.0000398899,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
41
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":0.9933445912,"step":10000,"loss":0.0404,"grad_norm":0.1414766461,"learning_rate":0.0000395632,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
42
+ {"eval_loss":0.0430381931,"eval_rouge":0.9863006978,"eval_tool_call_equivalence":0.8706896552,"eval_binary_tool_call":0.8620689655,"eval_staged_tool_call":0.9030172414,"eval_runtime":19.6728,"eval_samples_per_second":5.896,"eval_steps_per_second":5.896,"epoch":1.0,"step":10067,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
43
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.018178206,"step":10250,"loss":0.0422,"grad_norm":0.0519577749,"learning_rate":0.0000392364,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
44
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.0430118208,"step":10500,"loss":0.0377,"grad_norm":0.321157366,"learning_rate":0.0000389097,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
45
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.0678454356,"step":10750,"loss":0.0468,"grad_norm":0.2193273753,"learning_rate":0.0000385829,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
46
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.0926790504,"step":11000,"loss":0.0431,"grad_norm":0.2104297876,"learning_rate":0.0000382561,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
47
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.1175126651,"step":11250,"loss":0.0434,"grad_norm":2.6984224319,"learning_rate":0.0000379294,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
48
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.1423462799,"step":11500,"loss":0.0422,"grad_norm":0.2329981774,"learning_rate":0.0000376026,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
49
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.1671798947,"step":11750,"loss":0.0472,"grad_norm":0.0543616787,"learning_rate":0.0000372758,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
50
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.1920135095,"step":12000,"loss":0.0449,"grad_norm":0.0525575913,"learning_rate":0.0000369491,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
51
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.2168471243,"step":12250,"loss":0.0383,"grad_norm":0.0662751496,"learning_rate":0.0000366223,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
52
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.241680739,"step":12500,"loss":0.0393,"grad_norm":0.1204848066,"learning_rate":0.0000362956,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
53
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.2665143538,"step":12750,"loss":0.044,"grad_norm":0.2785277367,"learning_rate":0.0000359688,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
54
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.2913479686,"step":13000,"loss":0.0439,"grad_norm":0.0860207006,"learning_rate":0.000035642,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
55
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.3161815834,"step":13250,"loss":0.0403,"grad_norm":0.4457266629,"learning_rate":0.0000353153,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
56
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.3410151982,"step":13500,"loss":0.0369,"grad_norm":0.2941795886,"learning_rate":0.0000349885,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
57
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.365848813,"step":13750,"loss":0.0338,"grad_norm":0.0419899225,"learning_rate":0.0000346617,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
58
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.3906824277,"step":14000,"loss":0.0465,"grad_norm":0.0886099115,"learning_rate":0.000034335,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
59
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.4155160425,"step":14250,"loss":0.0473,"grad_norm":0.2724850178,"learning_rate":0.0000340082,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
60
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.4403496573,"step":14500,"loss":0.0465,"grad_norm":0.0384613164,"learning_rate":0.0000336814,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
61
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.4651832721,"step":14750,"loss":0.0393,"grad_norm":0.4601438046,"learning_rate":0.0000333547,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
62
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.4900168869,"step":15000,"loss":0.0383,"grad_norm":0.3925597072,"learning_rate":0.0000330279,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
63
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.5148505016,"step":15250,"loss":0.0414,"grad_norm":0.0710019544,"learning_rate":0.0000327012,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
64
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.5396841164,"step":15500,"loss":0.0461,"grad_norm":0.0534473732,"learning_rate":0.0000323744,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
65
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.5645177312,"step":15750,"loss":0.0517,"grad_norm":0.0649423599,"learning_rate":0.0000320476,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
66
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.589351346,"step":16000,"loss":0.0362,"grad_norm":0.0753157809,"learning_rate":0.0000317209,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
67
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.6141849608,"step":16250,"loss":0.0393,"grad_norm":0.3943573833,"learning_rate":0.0000313941,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
68
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.6390185755,"step":16500,"loss":0.0368,"grad_norm":0.1251079738,"learning_rate":0.0000310673,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
69
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.6638521903,"step":16750,"loss":0.0411,"grad_norm":0.044801265,"learning_rate":0.0000307406,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
70
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.6886858051,"step":17000,"loss":0.0443,"grad_norm":0.0427166261,"learning_rate":0.0000304138,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
71
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.7135194199,"step":17250,"loss":0.0464,"grad_norm":0.0639711693,"learning_rate":0.000030087,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
72
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.7383530347,"step":17500,"loss":0.0453,"grad_norm":0.0642816722,"learning_rate":0.0000297603,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
73
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.7631866494,"step":17750,"loss":0.04,"grad_norm":0.1868746877,"learning_rate":0.0000294335,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
74
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.7880202642,"step":18000,"loss":0.0373,"grad_norm":0.0283656474,"learning_rate":0.0000291068,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
75
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.812853879,"step":18250,"loss":0.0354,"grad_norm":0.061672993,"learning_rate":0.00002878,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
76
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.8376874938,"step":18500,"loss":0.0414,"grad_norm":0.3326004446,"learning_rate":0.0000284532,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
77
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.8625211086,"step":18750,"loss":0.0417,"grad_norm":1.3477236032,"learning_rate":0.0000281265,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
78
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.8873547234,"step":19000,"loss":0.0439,"grad_norm":0.2901188135,"learning_rate":0.0000277997,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
79
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.9121883381,"step":19250,"loss":0.041,"grad_norm":0.1659445912,"learning_rate":0.0000274729,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
80
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.9370219529,"step":19500,"loss":0.0361,"grad_norm":0.2090554982,"learning_rate":0.0000271462,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
81
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.9618555677,"step":19750,"loss":0.0436,"grad_norm":0.0705826804,"learning_rate":0.0000268194,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
82
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":1.9866891825,"step":20000,"loss":0.0432,"grad_norm":2.640181303,"learning_rate":0.0000264927,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
83
+ {"eval_loss":0.0358983688,"eval_rouge":0.9855189196,"eval_tool_call_equivalence":0.8706896552,"eval_binary_tool_call":0.8620689655,"eval_staged_tool_call":0.9030172414,"eval_runtime":19.6597,"eval_samples_per_second":5.9,"eval_steps_per_second":5.9,"epoch":2.0,"step":20134,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
84
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.0115227973,"step":20250,"loss":0.0417,"grad_norm":0.1638754904,"learning_rate":0.0000261659,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
85
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.036356412,"step":20500,"loss":0.0298,"grad_norm":0.0364276841,"learning_rate":0.0000258391,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
86
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.0611900268,"step":20750,"loss":0.0396,"grad_norm":0.3809307218,"learning_rate":0.0000255124,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
87
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.0860236416,"step":21000,"loss":0.0345,"grad_norm":0.0432023481,"learning_rate":0.0000251856,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
88
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.1108572564,"step":21250,"loss":0.0365,"grad_norm":0.0294632148,"learning_rate":0.0000248588,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
89
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.1356908712,"step":21500,"loss":0.0382,"grad_norm":0.0870317742,"learning_rate":0.0000245321,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
90
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.1605244859,"step":21750,"loss":0.0322,"grad_norm":0.034489911,"learning_rate":0.0000242053,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
91
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.1853581007,"step":22000,"loss":0.0384,"grad_norm":1.6466137171,"learning_rate":0.0000238785,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
92
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.2101917155,"step":22250,"loss":0.0304,"grad_norm":0.0214590635,"learning_rate":0.0000235518,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
93
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.2350253303,"step":22500,"loss":0.0344,"grad_norm":0.0798802301,"learning_rate":0.000023225,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
94
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.2598589451,"step":22750,"loss":0.0402,"grad_norm":0.0384551212,"learning_rate":0.0000228983,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
95
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.2846925598,"step":23000,"loss":0.0331,"grad_norm":0.0131905973,"learning_rate":0.0000225715,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
96
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.3095261746,"step":23250,"loss":0.0354,"grad_norm":0.068654187,"learning_rate":0.0000222447,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
97
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.3343597894,"step":23500,"loss":0.0327,"grad_norm":0.0167796388,"learning_rate":0.000021918,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
98
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.3591934042,"step":23750,"loss":0.0425,"grad_norm":0.457858175,"learning_rate":0.0000215912,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
99
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.384027019,"step":24000,"loss":0.0358,"grad_norm":0.0378973074,"learning_rate":0.0000212644,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
100
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.4088606338,"step":24250,"loss":0.0398,"grad_norm":0.5377736688,"learning_rate":0.0000209377,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
101
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.4336942485,"step":24500,"loss":0.0319,"grad_norm":0.0894756168,"learning_rate":0.0000206109,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
102
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.4585278633,"step":24750,"loss":0.0344,"grad_norm":0.0414341316,"learning_rate":0.0000202842,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
103
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.4833614781,"step":25000,"loss":0.0367,"grad_norm":0.2292278707,"learning_rate":0.0000199574,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
104
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.5081950929,"step":25250,"loss":0.0361,"grad_norm":0.0549157448,"learning_rate":0.0000196306,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
105
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.5330287077,"step":25500,"loss":0.0358,"grad_norm":0.2996936142,"learning_rate":0.0000193039,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
106
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.5578623224,"step":25750,"loss":0.037,"grad_norm":0.2669653594,"learning_rate":0.0000189771,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
107
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.5826959372,"step":26000,"loss":0.0382,"grad_norm":0.0466229357,"learning_rate":0.0000186503,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
108
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.607529552,"step":26250,"loss":0.0283,"grad_norm":0.0527968071,"learning_rate":0.0000183236,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
109
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.6323631668,"step":26500,"loss":0.0376,"grad_norm":0.0232540071,"learning_rate":0.0000179968,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
110
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.6571967816,"step":26750,"loss":0.0364,"grad_norm":0.0282502957,"learning_rate":0.00001767,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
111
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.6820303963,"step":27000,"loss":0.0367,"grad_norm":0.1842947155,"learning_rate":0.0000173433,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
112
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.7068640111,"step":27250,"loss":0.0271,"grad_norm":0.0426635928,"learning_rate":0.0000170165,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
113
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.7316976259,"step":27500,"loss":0.0348,"grad_norm":0.4782447517,"learning_rate":0.0000166898,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
114
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.7565312407,"step":27750,"loss":0.0419,"grad_norm":0.2179758102,"learning_rate":0.000016363,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
115
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.7813648555,"step":28000,"loss":0.0333,"grad_norm":0.0859175026,"learning_rate":0.0000160362,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
116
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.8061984702,"step":28250,"loss":0.0358,"grad_norm":0.2768991888,"learning_rate":0.0000157095,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
117
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.831032085,"step":28500,"loss":0.0364,"grad_norm":0.0252283551,"learning_rate":0.0000153827,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
118
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.8558656998,"step":28750,"loss":0.0348,"grad_norm":0.0317878909,"learning_rate":0.0000150559,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
119
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.8806993146,"step":29000,"loss":0.0347,"grad_norm":0.0295381546,"learning_rate":0.0000147292,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
120
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.9055329294,"step":29250,"loss":0.0383,"grad_norm":0.0400734581,"learning_rate":0.0000144024,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
121
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.9303665442,"step":29500,"loss":0.0381,"grad_norm":0.0849210471,"learning_rate":0.0000140757,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
122
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.9552001589,"step":29750,"loss":0.0391,"grad_norm":0.0403545275,"learning_rate":0.0000137489,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
123
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":2.9800337737,"step":30000,"loss":0.0301,"grad_norm":0.0799941421,"learning_rate":0.0000134221,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
124
+ {"eval_loss":0.0392343849,"eval_rouge":0.9865965058,"eval_tool_call_equivalence":0.8706896552,"eval_binary_tool_call":0.8620689655,"eval_staged_tool_call":0.9051724138,"eval_runtime":19.7459,"eval_samples_per_second":5.875,"eval_steps_per_second":5.875,"epoch":3.0,"step":30201,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
125
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.0048673885,"step":30250,"loss":0.0332,"grad_norm":0.0398163088,"learning_rate":0.0000130954,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
126
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.0297010033,"step":30500,"loss":0.0282,"grad_norm":0.0317372046,"learning_rate":0.0000127686,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
127
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.0545346181,"step":30750,"loss":0.0338,"grad_norm":0.2262095511,"learning_rate":0.0000124418,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
128
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.0793682328,"step":31000,"loss":0.0361,"grad_norm":0.1756877601,"learning_rate":0.0000121151,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
129
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.1042018476,"step":31250,"loss":0.0308,"grad_norm":0.0328648239,"learning_rate":0.0000117883,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
130
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.1290354624,"step":31500,"loss":0.0324,"grad_norm":0.2761674225,"learning_rate":0.0000114615,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
131
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.1538690772,"step":31750,"loss":0.0346,"grad_norm":0.0572393797,"learning_rate":0.0000111348,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
132
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.178702692,"step":32000,"loss":0.0265,"grad_norm":0.0776479617,"learning_rate":0.000010808,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
133
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.2035363067,"step":32250,"loss":0.0367,"grad_norm":0.0663257316,"learning_rate":0.0000104813,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
134
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.2283699215,"step":32500,"loss":0.0338,"grad_norm":0.032736212,"learning_rate":0.0000101545,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
135
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.2532035363,"step":32750,"loss":0.0318,"grad_norm":0.0533499308,"learning_rate":0.0000098277,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
136
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.2780371511,"step":33000,"loss":0.036,"grad_norm":0.1117026359,"learning_rate":0.000009501,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
137
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.3028707659,"step":33250,"loss":0.0279,"grad_norm":0.0364189185,"learning_rate":0.0000091742,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
138
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.3277043806,"step":33500,"loss":0.0288,"grad_norm":0.1919518709,"learning_rate":0.0000088474,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
139
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.3525379954,"step":33750,"loss":0.0292,"grad_norm":0.0342233889,"learning_rate":0.0000085207,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
140
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.3773716102,"step":34000,"loss":0.0332,"grad_norm":0.2129013538,"learning_rate":0.0000081939,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
141
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.402205225,"step":34250,"loss":0.0313,"grad_norm":0.0733610839,"learning_rate":0.0000078672,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
142
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.4270388398,"step":34500,"loss":0.0342,"grad_norm":0.5886294246,"learning_rate":0.0000075404,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
143
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.4518724546,"step":34750,"loss":0.0366,"grad_norm":1.2232671976,"learning_rate":0.0000072136,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
144
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.4767060693,"step":35000,"loss":0.0315,"grad_norm":0.1556661278,"learning_rate":0.0000068869,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
145
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.5015396841,"step":35250,"loss":0.0291,"grad_norm":0.025047075,"learning_rate":0.0000065601,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
146
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.5263732989,"step":35500,"loss":0.0284,"grad_norm":0.3008776605,"learning_rate":0.0000062333,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
147
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.5512069137,"step":35750,"loss":0.0308,"grad_norm":0.0309196785,"learning_rate":0.0000059066,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
148
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.5760405285,"step":36000,"loss":0.0265,"grad_norm":0.0655346811,"learning_rate":0.0000055798,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
149
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.6008741432,"step":36250,"loss":0.0278,"grad_norm":0.0700420216,"learning_rate":0.000005253,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
150
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.625707758,"step":36500,"loss":0.0241,"grad_norm":0.054927621,"learning_rate":0.0000049263,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
151
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.6505413728,"step":36750,"loss":0.0361,"grad_norm":0.1254446805,"learning_rate":0.0000045995,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
152
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.6753749876,"step":37000,"loss":0.032,"grad_norm":0.0182026383,"learning_rate":0.0000042728,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
153
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.7002086024,"step":37250,"loss":0.0342,"grad_norm":0.3253279924,"learning_rate":0.000003946,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
154
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.7250422171,"step":37500,"loss":0.0311,"grad_norm":0.0849901214,"learning_rate":0.0000036192,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
155
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.7498758319,"step":37750,"loss":0.0336,"grad_norm":0.2967416346,"learning_rate":0.0000032925,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
156
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.7747094467,"step":38000,"loss":0.0286,"grad_norm":0.0509654805,"learning_rate":0.0000029657,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
157
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.7995430615,"step":38250,"loss":0.0287,"grad_norm":0.0504853502,"learning_rate":0.0000026389,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
158
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.8243766763,"step":38500,"loss":0.0339,"grad_norm":0.0277506951,"learning_rate":0.0000023122,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
159
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.849210291,"step":38750,"loss":0.0304,"grad_norm":0.0322158001,"learning_rate":0.0000019854,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
160
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.8740439058,"step":39000,"loss":0.0275,"grad_norm":0.17166996,"learning_rate":0.0000016587,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
161
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.8988775206,"step":39250,"loss":0.0299,"grad_norm":0.0439938009,"learning_rate":0.0000013319,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
162
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.9237111354,"step":39500,"loss":0.0302,"grad_norm":0.0341867059,"learning_rate":0.0000010051,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
163
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.9485447502,"step":39750,"loss":0.0254,"grad_norm":0.1895751506,"learning_rate":0.0000006784,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
164
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.973378365,"step":40000,"loss":0.0352,"grad_norm":0.1096540615,"learning_rate":0.0000003516,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
165
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":3.9982119797,"step":40250,"loss":0.0275,"grad_norm":0.0220601037,"learning_rate":0.0000000248,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
166
+ {"eval_loss":0.0415498056,"eval_rouge":0.9888400956,"eval_tool_call_equivalence":0.8879310345,"eval_binary_tool_call":0.8793103448,"eval_staged_tool_call":0.9094827586,"eval_runtime":19.2458,"eval_samples_per_second":6.027,"eval_steps_per_second":6.027,"epoch":4.0,"step":40268,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":null,"train_samples_per_second":null,"train_steps_per_second":null,"total_flos":null,"train_loss":null}
167
+ {"eval_loss":null,"eval_rouge":null,"eval_tool_call_equivalence":null,"eval_binary_tool_call":null,"eval_staged_tool_call":null,"eval_runtime":null,"eval_samples_per_second":null,"eval_steps_per_second":null,"epoch":4.0,"step":40268,"loss":null,"grad_norm":null,"learning_rate":null,"train_runtime":18449.6161,"train_samples_per_second":2.183,"train_steps_per_second":2.183,"total_flos":1.781823338e+18,"train_loss":0.0433151838}