mms-1b-all-lwazi-gcp
This model is a fine-tuned version of facebook/mms-1b-all on the Lwazi dataset. It achieves the following results on the evaluation set:
- Loss: 0.3278
- Wer: 0.3548
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.2757 | 0.1696 | 200 | 1.5263 | 0.8641 |
| 1.0044 | 0.3393 | 400 | 0.7391 | 0.6981 |
| 0.8441 | 0.5089 | 600 | 0.6358 | 0.6503 |
| 0.8042 | 0.6785 | 800 | 0.5251 | 0.5572 |
| 0.7301 | 0.8482 | 1000 | 0.4920 | 0.5228 |
| 0.6085 | 1.0178 | 1200 | 0.4222 | 0.4242 |
| 0.6014 | 1.1874 | 1400 | 0.3945 | 0.4101 |
| 0.5723 | 1.3571 | 1600 | 0.3659 | 0.3880 |
| 0.525 | 1.5267 | 1800 | 0.3385 | 0.3639 |
| 0.5201 | 1.6964 | 2000 | 0.3278 | 0.3548 |
Framework versions
- Transformers 4.52.0
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 6
Model tree for dsfsi/mms-1b-all-lwazi
Base model
facebook/mms-1b-all