Upload model
Browse files- config.json +4 -0
- configuration.py +40 -0
- modeling.py +95 -0
- unet.py +243 -0
config.json
CHANGED
|
@@ -2,6 +2,10 @@
|
|
| 2 |
"architectures": [
|
| 3 |
"PneumoniaModel"
|
| 4 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"backbone": "tf_efficientnetv2_s",
|
| 6 |
"cls_dropout": 0.1,
|
| 7 |
"cls_num_classes": 1,
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"PneumoniaModel"
|
| 4 |
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration.PneumoniaConfig",
|
| 7 |
+
"AutoModel": "modeling.PneumoniaModel"
|
| 8 |
+
},
|
| 9 |
"backbone": "tf_efficientnetv2_s",
|
| 10 |
"cls_dropout": 0.1,
|
| 11 |
"cls_num_classes": 1,
|
configuration.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class PneumoniaConfig(PretrainedConfig):
|
| 6 |
+
model_type = "pneumonia"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
backbone: str = "tf_efficientnetv2_s",
|
| 11 |
+
feature_dim: int = 256,
|
| 12 |
+
seg_dropout: float = 0.1,
|
| 13 |
+
cls_dropout: float = 0.1,
|
| 14 |
+
seg_num_classes: int = 1,
|
| 15 |
+
cls_num_classes: int = 1,
|
| 16 |
+
in_chans: int = 1,
|
| 17 |
+
img_size: Tuple[int, int] = (512, 512), # height, width
|
| 18 |
+
decoder_n_blocks: int = 5,
|
| 19 |
+
decoder_channels: List[int] = [256, 128, 64, 32, 16],
|
| 20 |
+
encoder_channels: List[int] = [24, 48, 64, 160, 256],
|
| 21 |
+
decoder_center_block: bool = False,
|
| 22 |
+
decoder_norm_layer: str = "bn",
|
| 23 |
+
decoder_attention_type: Optional[str] = None,
|
| 24 |
+
**kwargs,
|
| 25 |
+
):
|
| 26 |
+
self.backbone = backbone
|
| 27 |
+
self.feature_dim = feature_dim
|
| 28 |
+
self.seg_dropout = seg_dropout
|
| 29 |
+
self.cls_dropout = cls_dropout
|
| 30 |
+
self.seg_num_classes = seg_num_classes
|
| 31 |
+
self.cls_num_classes = cls_num_classes
|
| 32 |
+
self.in_chans = in_chans
|
| 33 |
+
self.img_size = img_size
|
| 34 |
+
self.decoder_n_blocks = decoder_n_blocks
|
| 35 |
+
self.decoder_channels = decoder_channels
|
| 36 |
+
self.encoder_channels = encoder_channels
|
| 37 |
+
self.decoder_center_block = decoder_center_block
|
| 38 |
+
self.decoder_norm_layer = decoder_norm_layer
|
| 39 |
+
self.decoder_attention_type = decoder_attention_type
|
| 40 |
+
super().__init__(**kwargs)
|
modeling.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import albumentations as A
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
|
| 5 |
+
from numpy.typing import NDArray
|
| 6 |
+
from transformers import PreTrainedModel
|
| 7 |
+
from timm import create_model
|
| 8 |
+
from typing import Optional
|
| 9 |
+
from .configuration import PneumoniaConfig
|
| 10 |
+
from .unet import UnetDecoder, SegmentationHead
|
| 11 |
+
|
| 12 |
+
_PYDICOM_AVAILABLE = False
|
| 13 |
+
try:
|
| 14 |
+
from pydicom import dcmread
|
| 15 |
+
from pydicom.pixels import apply_voi_lut
|
| 16 |
+
|
| 17 |
+
_PYDICOM_AVAILABLE = True
|
| 18 |
+
except ModuleNotFoundError:
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class PneumoniaModel(PreTrainedModel):
|
| 23 |
+
config_class = PneumoniaConfig
|
| 24 |
+
|
| 25 |
+
def __init__(self, config):
|
| 26 |
+
super().__init__(config)
|
| 27 |
+
self.encoder = create_model(
|
| 28 |
+
model_name=config.backbone,
|
| 29 |
+
features_only=True,
|
| 30 |
+
pretrained=False,
|
| 31 |
+
in_chans=config.in_chans,
|
| 32 |
+
)
|
| 33 |
+
self.decoder = UnetDecoder(
|
| 34 |
+
decoder_n_blocks=config.decoder_n_blocks,
|
| 35 |
+
decoder_channels=config.decoder_channels,
|
| 36 |
+
encoder_channels=config.encoder_channels,
|
| 37 |
+
decoder_center_block=config.decoder_center_block,
|
| 38 |
+
decoder_norm_layer=config.decoder_norm_layer,
|
| 39 |
+
decoder_attention_type=config.decoder_attention_type,
|
| 40 |
+
)
|
| 41 |
+
self.img_size = config.img_size
|
| 42 |
+
self.segmentation_head = SegmentationHead(
|
| 43 |
+
in_channels=config.decoder_channels[-1],
|
| 44 |
+
out_channels=config.seg_num_classes,
|
| 45 |
+
size=self.img_size,
|
| 46 |
+
)
|
| 47 |
+
self.pooling = nn.AdaptiveAvgPool2d(1)
|
| 48 |
+
self.dropout = nn.Dropout(p=config.cls_dropout)
|
| 49 |
+
self.classifier = nn.Linear(config.feature_dim, config.cls_num_classes)
|
| 50 |
+
|
| 51 |
+
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
# [0, 255] -> [-1, 1]
|
| 53 |
+
mini, maxi = 0.0, 255.0
|
| 54 |
+
x = (x - mini) / (maxi - mini)
|
| 55 |
+
x = (x - 0.5) * 2.0
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
@staticmethod
|
| 59 |
+
def load_image_from_dicom(path: str) -> Optional[NDArray]:
|
| 60 |
+
if not _PYDICOM_AVAILABLE:
|
| 61 |
+
print("`pydicom` is not installed, returning None ...")
|
| 62 |
+
return None
|
| 63 |
+
dicom = dcmread(path)
|
| 64 |
+
arr = apply_voi_lut(dicom.pixel_array, dicom)
|
| 65 |
+
if dicom.PhotometricInterpretation == "MONOCHROME1":
|
| 66 |
+
# invert image if needed
|
| 67 |
+
arr = arr.max() - arr
|
| 68 |
+
|
| 69 |
+
arr = arr - arr.min()
|
| 70 |
+
arr = arr / arr.max()
|
| 71 |
+
arr = (arr * 255).astype("uint8")
|
| 72 |
+
return arr
|
| 73 |
+
|
| 74 |
+
def preprocess(self, x: NDArray) -> NDArray:
|
| 75 |
+
x = A.Resize(self.img_size[0], self.img_size[1], p=1)(image=x)["image"]
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
def forward(self, x: torch.Tensor, return_logits: bool = False) -> torch.Tensor:
|
| 79 |
+
x = self.normalize(x)
|
| 80 |
+
features = self.encoder(x)
|
| 81 |
+
decoder_output = self.decoder(features)
|
| 82 |
+
logits = self.segmentation_head(decoder_output[-1])
|
| 83 |
+
b, n = features[-1].shape[:2]
|
| 84 |
+
features = self.pooling(features[-1]).reshape(b, n)
|
| 85 |
+
features = self.dropout(features)
|
| 86 |
+
cls_logits = self.classifier(features)
|
| 87 |
+
out = {
|
| 88 |
+
"mask": logits,
|
| 89 |
+
"cls": cls_logits
|
| 90 |
+
}
|
| 91 |
+
if return_logits:
|
| 92 |
+
return out
|
| 93 |
+
out["mask"] = out["mask"].sigmoid()
|
| 94 |
+
out["cls"] = out["cls"].sigmoid()
|
| 95 |
+
return out
|
unet.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from functools import partial
|
| 6 |
+
from typing import List, Optional
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Conv2dAct(nn.Sequential):
|
| 10 |
+
def __init__(
|
| 11 |
+
self,
|
| 12 |
+
in_channels: int,
|
| 13 |
+
out_channels: int,
|
| 14 |
+
kernel_size: int,
|
| 15 |
+
padding: int = 0,
|
| 16 |
+
stride: int = 1,
|
| 17 |
+
norm_layer: str = "bn",
|
| 18 |
+
num_groups: int = 32, # for GroupNorm,
|
| 19 |
+
activation: str = "ReLU",
|
| 20 |
+
inplace: bool = True, # for activation
|
| 21 |
+
):
|
| 22 |
+
if norm_layer == "bn":
|
| 23 |
+
NormLayer = nn.BatchNorm2d
|
| 24 |
+
elif norm_layer == "gn":
|
| 25 |
+
NormLayer = partial(nn.GroupNorm, num_groups=num_groups)
|
| 26 |
+
else:
|
| 27 |
+
raise Exception(
|
| 28 |
+
f"`norm_layer` must be one of [`bn`, `gn`], got `{norm_layer}`"
|
| 29 |
+
)
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.conv = nn.Conv2d(
|
| 32 |
+
in_channels,
|
| 33 |
+
out_channels,
|
| 34 |
+
kernel_size=kernel_size,
|
| 35 |
+
stride=stride,
|
| 36 |
+
padding=padding,
|
| 37 |
+
bias=False,
|
| 38 |
+
)
|
| 39 |
+
self.norm = NormLayer(out_channels)
|
| 40 |
+
self.act = getattr(nn, activation)(inplace=inplace)
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
return self.act(self.norm(self.conv(x)))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class SCSEModule(nn.Module):
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
in_channels: int,
|
| 50 |
+
reduction: int = 16,
|
| 51 |
+
activation: str = "ReLU",
|
| 52 |
+
inplace: bool = False,
|
| 53 |
+
):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.cSE = nn.Sequential(
|
| 56 |
+
nn.AdaptiveAvgPool2d(1),
|
| 57 |
+
nn.Conv2d(in_channels, in_channels // reduction, 1),
|
| 58 |
+
getattr(nn, activation)(inplace=inplace),
|
| 59 |
+
nn.Conv2d(in_channels // reduction, in_channels, 1),
|
| 60 |
+
)
|
| 61 |
+
self.sSE = nn.Conv2d(in_channels, 1, 1)
|
| 62 |
+
|
| 63 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 64 |
+
return x * self.cSE(x).sigmoid() + x * self.sSE(x).sigmoid()
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class Attention(nn.Module):
|
| 68 |
+
def __init__(self, name: str, **params):
|
| 69 |
+
super().__init__()
|
| 70 |
+
|
| 71 |
+
if name is None:
|
| 72 |
+
self.attention = nn.Identity(**params)
|
| 73 |
+
elif name == "scse":
|
| 74 |
+
self.attention = SCSEModule(**params)
|
| 75 |
+
else:
|
| 76 |
+
raise ValueError("Attention {} is not implemented".format(name))
|
| 77 |
+
|
| 78 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 79 |
+
return self.attention(x)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class DecoderBlock(nn.Module):
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
in_channels: int,
|
| 86 |
+
skip_channels: int,
|
| 87 |
+
out_channels: int,
|
| 88 |
+
norm_layer: str = "bn",
|
| 89 |
+
activation: str = "ReLU",
|
| 90 |
+
attention_type: Optional[str] = None,
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.conv1 = Conv2dAct(
|
| 94 |
+
in_channels + skip_channels,
|
| 95 |
+
out_channels,
|
| 96 |
+
kernel_size=3,
|
| 97 |
+
padding=1,
|
| 98 |
+
norm_layer=norm_layer,
|
| 99 |
+
activation=activation,
|
| 100 |
+
)
|
| 101 |
+
self.attention1 = Attention(
|
| 102 |
+
attention_type, in_channels=in_channels + skip_channels
|
| 103 |
+
)
|
| 104 |
+
self.conv2 = Conv2dAct(
|
| 105 |
+
out_channels,
|
| 106 |
+
out_channels,
|
| 107 |
+
kernel_size=3,
|
| 108 |
+
padding=1,
|
| 109 |
+
norm_layer=norm_layer,
|
| 110 |
+
activation=activation,
|
| 111 |
+
)
|
| 112 |
+
self.attention2 = Attention(attention_type, in_channels=out_channels)
|
| 113 |
+
|
| 114 |
+
def forward(
|
| 115 |
+
self, x: torch.Tensor, skip: Optional[torch.Tensor] = None
|
| 116 |
+
) -> torch.Tensor:
|
| 117 |
+
if skip is not None:
|
| 118 |
+
h, w = skip.shape[2:]
|
| 119 |
+
x = F.interpolate(x, size=(h, w), mode="nearest")
|
| 120 |
+
x = torch.cat([x, skip], dim=1)
|
| 121 |
+
x = self.attention1(x)
|
| 122 |
+
else:
|
| 123 |
+
x = F.interpolate(x, scale_factor=(2, 2), mode="nearest")
|
| 124 |
+
x = self.conv1(x)
|
| 125 |
+
x = self.conv2(x)
|
| 126 |
+
x = self.attention2(x)
|
| 127 |
+
return x
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class CenterBlock(nn.Sequential):
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
in_channels: int,
|
| 134 |
+
out_channels: int,
|
| 135 |
+
norm_layer: str = "bn",
|
| 136 |
+
activation: str = "ReLU",
|
| 137 |
+
):
|
| 138 |
+
conv1 = Conv2dAct(
|
| 139 |
+
in_channels,
|
| 140 |
+
out_channels,
|
| 141 |
+
kernel_size=3,
|
| 142 |
+
padding=1,
|
| 143 |
+
norm_layer=norm_layer,
|
| 144 |
+
activation=activation,
|
| 145 |
+
)
|
| 146 |
+
conv2 = Conv2dAct(
|
| 147 |
+
out_channels,
|
| 148 |
+
out_channels,
|
| 149 |
+
kernel_size=3,
|
| 150 |
+
padding=1,
|
| 151 |
+
norm_layer=norm_layer,
|
| 152 |
+
activation=activation,
|
| 153 |
+
)
|
| 154 |
+
super().__init__(conv1, conv2)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class UnetDecoder(nn.Module):
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
decoder_n_blocks: int,
|
| 161 |
+
decoder_channels: List[int],
|
| 162 |
+
encoder_channels: List[int],
|
| 163 |
+
decoder_center_block: bool = False,
|
| 164 |
+
decoder_norm_layer: str = "bn",
|
| 165 |
+
decoder_attention_type: Optional[str] = None,
|
| 166 |
+
):
|
| 167 |
+
super().__init__()
|
| 168 |
+
|
| 169 |
+
self.decoder_n_blocks = decoder_n_blocks
|
| 170 |
+
self.decoder_channels = decoder_channels
|
| 171 |
+
self.encoder_channels = encoder_channels
|
| 172 |
+
self.decoder_center_block = decoder_center_block
|
| 173 |
+
self.decoder_norm_layer = decoder_norm_layer
|
| 174 |
+
self.decoder_attention_type = decoder_attention_type
|
| 175 |
+
|
| 176 |
+
if self.decoder_n_blocks != len(self.decoder_channels):
|
| 177 |
+
raise ValueError(
|
| 178 |
+
"Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
|
| 179 |
+
self.decoder_n_blocks, len(self.decoder_channels)
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
# reverse channels to start from head of encoder
|
| 183 |
+
encoder_channels = encoder_channels[::-1]
|
| 184 |
+
|
| 185 |
+
# computing blocks input and output channels
|
| 186 |
+
head_channels = encoder_channels[0]
|
| 187 |
+
in_channels = [head_channels] + list(self.decoder_channels[:-1])
|
| 188 |
+
skip_channels = list(encoder_channels[1:]) + [0]
|
| 189 |
+
out_channels = self.decoder_channels
|
| 190 |
+
|
| 191 |
+
if self.decoder_center_block:
|
| 192 |
+
self.center = CenterBlock(
|
| 193 |
+
head_channels, head_channels, norm_layer=self.decoder_norm_layer
|
| 194 |
+
)
|
| 195 |
+
else:
|
| 196 |
+
self.center = nn.Identity()
|
| 197 |
+
|
| 198 |
+
# combine decoder keyword arguments
|
| 199 |
+
kwargs = dict(
|
| 200 |
+
norm_layer=self.decoder_norm_layer,
|
| 201 |
+
attention_type=self.decoder_attention_type,
|
| 202 |
+
)
|
| 203 |
+
blocks = [
|
| 204 |
+
DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
|
| 205 |
+
for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
|
| 206 |
+
]
|
| 207 |
+
self.blocks = nn.ModuleList(blocks)
|
| 208 |
+
|
| 209 |
+
def forward(self, features: List[torch.Tensor]) -> torch.Tensor:
|
| 210 |
+
features = features[::-1] # reverse channels to start from head of encoder
|
| 211 |
+
|
| 212 |
+
head = features[0]
|
| 213 |
+
skips = features[1:]
|
| 214 |
+
|
| 215 |
+
output = [self.center(head)]
|
| 216 |
+
for i, decoder_block in enumerate(self.blocks):
|
| 217 |
+
skip = skips[i] if i < len(skips) else None
|
| 218 |
+
output.append(decoder_block(output[-1], skip))
|
| 219 |
+
|
| 220 |
+
return output
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class SegmentationHead(nn.Module):
|
| 224 |
+
def __init__(
|
| 225 |
+
self,
|
| 226 |
+
in_channels: int,
|
| 227 |
+
out_channels: int,
|
| 228 |
+
size: int,
|
| 229 |
+
kernel_size: int = 3,
|
| 230 |
+
dropout: float = 0.0,
|
| 231 |
+
):
|
| 232 |
+
super().__init__()
|
| 233 |
+
self.drop = nn.Dropout2d(p=dropout)
|
| 234 |
+
self.conv = nn.Conv2d(
|
| 235 |
+
in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2
|
| 236 |
+
)
|
| 237 |
+
if isinstance(size, (tuple, list)):
|
| 238 |
+
self.up = nn.Upsample(size=size, mode="bilinear")
|
| 239 |
+
else:
|
| 240 |
+
self.up = nn.Identity()
|
| 241 |
+
|
| 242 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 243 |
+
return self.up(self.conv(self.drop(x)))
|