|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
from torchvision import transforms
|
|
|
from PIL import Image
|
|
|
import timm
|
|
|
import os
|
|
|
|
|
|
class EfficientNetB0Alpha(nn.Module):
|
|
|
def __init__(self, num_classes=26):
|
|
|
super().__init__()
|
|
|
self.model = timm.create_model('efficientnet_b0', pretrained=False, in_chans=1, num_classes=num_classes)
|
|
|
|
|
|
def forward(self, x):
|
|
|
return self.model(x)
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
checkpoint_path = 'saved_models/best_model.pth'
|
|
|
num_classes = 26
|
|
|
|
|
|
transform = transforms.Compose([
|
|
|
transforms.Grayscale(num_output_channels=1),
|
|
|
transforms.Resize(224),
|
|
|
transforms.CenterCrop(224),
|
|
|
transforms.ToTensor(),
|
|
|
transforms.Normalize(mean=[0.5], std=[0.5])
|
|
|
])
|
|
|
|
|
|
model = EfficientNetB0Alpha(num_classes=num_classes).to(device)
|
|
|
if not os.path.exists(checkpoint_path):
|
|
|
raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}")
|
|
|
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=True)
|
|
|
model.load_state_dict(checkpoint['model_state_dict'])
|
|
|
class_names = checkpoint['class_names']
|
|
|
|
|
|
def predict_from_image(image_path):
|
|
|
|
|
|
img = Image.open(image_path).convert('L')
|
|
|
img = transform(img)
|
|
|
img = img.unsqueeze(0).to(device)
|
|
|
model.eval()
|
|
|
with torch.no_grad():
|
|
|
outputs = model(img)
|
|
|
probabilities = torch.softmax(outputs, dim=1)
|
|
|
confidence, predicted = torch.max(probabilities, 1)
|
|
|
predicted_class = class_names[predicted.item()]
|
|
|
confidence = confidence.item()
|
|
|
return predicted_class, confidence |