Update gaussian_diffusion.py
Browse files- gaussian_diffusion.py +4 -4
gaussian_diffusion.py
CHANGED
|
@@ -491,7 +491,7 @@ class GaussianDiffusion:
|
|
| 491 |
if noise is not None:
|
| 492 |
img = noise
|
| 493 |
else:
|
| 494 |
-
img = th.randn(*shape).
|
| 495 |
indices = list(range(self.num_timesteps))[::-1]
|
| 496 |
|
| 497 |
if progress:
|
|
@@ -501,7 +501,7 @@ class GaussianDiffusion:
|
|
| 501 |
indices = tqdm(indices)
|
| 502 |
|
| 503 |
for i in indices:
|
| 504 |
-
t = th.tensor([i] * shape[0]).
|
| 505 |
with th.no_grad():
|
| 506 |
out = self.p_sample(
|
| 507 |
model,
|
|
@@ -658,7 +658,7 @@ class GaussianDiffusion:
|
|
| 658 |
if noise is not None:
|
| 659 |
img = noise
|
| 660 |
else:
|
| 661 |
-
img = th.randn(*shape).
|
| 662 |
indices = list(range(self.num_timesteps))[::-1]
|
| 663 |
|
| 664 |
if progress:
|
|
@@ -668,7 +668,7 @@ class GaussianDiffusion:
|
|
| 668 |
indices = tqdm(indices)
|
| 669 |
|
| 670 |
for i in indices:
|
| 671 |
-
t = th.tensor([i] * shape[0]).
|
| 672 |
with th.no_grad():
|
| 673 |
out = self.ddim_sample(
|
| 674 |
model,
|
|
|
|
| 491 |
if noise is not None:
|
| 492 |
img = noise
|
| 493 |
else:
|
| 494 |
+
img = th.randn(*shape).cuda()
|
| 495 |
indices = list(range(self.num_timesteps))[::-1]
|
| 496 |
|
| 497 |
if progress:
|
|
|
|
| 501 |
indices = tqdm(indices)
|
| 502 |
|
| 503 |
for i in indices:
|
| 504 |
+
t = th.tensor([i] * shape[0]).cuda()
|
| 505 |
with th.no_grad():
|
| 506 |
out = self.p_sample(
|
| 507 |
model,
|
|
|
|
| 658 |
if noise is not None:
|
| 659 |
img = noise
|
| 660 |
else:
|
| 661 |
+
img = th.randn(*shape).cuda()
|
| 662 |
indices = list(range(self.num_timesteps))[::-1]
|
| 663 |
|
| 664 |
if progress:
|
|
|
|
| 668 |
indices = tqdm(indices)
|
| 669 |
|
| 670 |
for i in indices:
|
| 671 |
+
t = th.tensor([i] * shape[0]).cuda()
|
| 672 |
with th.no_grad():
|
| 673 |
out = self.ddim_sample(
|
| 674 |
model,
|