--- language: - ur license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-large-xls-r-300m-Urdu results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - type: wer value: 39.89 name: Test WER - type: cer value: 16.7 name: Test CER new_version: kingabzpro/whisper-large-v3-turbo-urdu pipeline_tag: automatic-speech-recognition --- # wav2vec2-large-xls-r-300m-Urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9889 - Wer: 0.5607 - Cer: 0.2370 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Urdu --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python # pip install transformers datasets pyctcdecode kenlm huggingface_hub torch import json, torch from datasets import load_dataset, Audio from transformers import AutoProcessor, AutoModelForCTC from pyctcdecode import build_ctcdecoder from huggingface_hub import hf_hub_download mid = "kingabzpro/wav2vec2-large-xls-r-300m-Urdu" proc = AutoProcessor.from_pretrained(mid) model = AutoModelForCTC.from_pretrained(mid).eval().to( "cuda" if torch.cuda.is_available() else "cpu" ) kenlm = hf_hub_download(mid, "language_model/5gram.bin") uni = hf_hub_download(mid, "language_model/unigrams.txt") try: attrs = json.load(open(hf_hub_download(mid, "language_model/attrs.json"), encoding="utf-8")) except: attrs = {} v = proc.tokenizer.get_vocab() id2tok = [t for t,i in sorted(v.items(), key=lambda x:x[1])] blank = proc.tokenizer.pad_token_id; wdt = proc.tokenizer.word_delimiter_token keep, labels = zip(*[ (i, "" if i==blank else " " if t==wdt else t) for i,t in enumerate(id2tok) if (i==blank or t==wdt or len(t)==1) ]) dec = build_ctcdecoder(list(labels), kenlm_model_path=kenlm, unigrams=open(uni,encoding="utf-8").read().splitlines()) dec.alpha, dec.beta = attrs.get("alpha",0.5), attrs.get("beta",1.0) ds = load_dataset("mozilla-foundation/common_voice_22_0", "ur", split="test", streaming=True) ex = next(iter(ds.cast_column("audio", Audio(sampling_rate=16_000)))) x = proc(ex["audio"]["array"], sampling_rate=16_000, return_tensors="pt").input_values.to(model.device) with torch.no_grad(): logits = model(x).logits[0].cpu().numpy()[:, keep] print(dec.decode(logits)) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 3.6398 | 30.77 | 400 | 3.3517 | 1.0 | 1.0 | | 2.9225 | 61.54 | 800 | 2.5123 | 1.0 | 0.8310 | | 1.2568 | 92.31 | 1200 | 0.9699 | 0.6273 | 0.2575 | | 0.8974 | 123.08 | 1600 | 0.9715 | 0.5888 | 0.2457 | | 0.7151 | 153.85 | 2000 | 0.9984 | 0.5588 | 0.2353 | | 0.6416 | 184.62 | 2400 | 0.9889 | 0.5607 | 0.2370 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.03 | 39.89 |