File size: 1,966 Bytes
f08eec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99a5f7c
 
ca1f988
 
 
 
 
 
 
99a5f7c
 
f08eec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: NousResearch/Hermes-4.3-36B
language:
- en
library_name: mlx
license: apache-2.0
pipeline_tag: text-generation
tags:
- Bytedance Seed
- instruct
- finetune
- reasoning
- hybrid-mode
- chatml
- function calling
- tool use
- json mode
- structured outputs
- atropos
- dataforge
- long context
- roleplaying
- chat
- mlx
widget:
- example_title: Hermes 4
  messages:
  - role: system
    content: You are Hermes 4, a capable, neutrally-aligned assistant. Prefer concise,
      correct answers.
  - role: user
    content: Explain the difference between BFS and DFS to a new CS student.
model-index:
- name: Hermes-4.3-ByteDance-Seed-36B
  results: []
---

# leonsarmiento/Hermes-4.3-36B-3bit-mlx

This model [leonsarmiento/Hermes-4.3-36B-3bit-mlx](https://huggingface.co/leonsarmiento/Hermes-4.3-36B-3bit-mlx) was
converted to MLX format from [NousResearch/Hermes-4.3-36B](https://huggingface.co/NousResearch/Hermes-4.3-36B)
using mlx-lm version **0.28.3**.

MIXED QUANT: 6-BIT EMBEDDINGS AND PREDICTION LAYERS, 3-BIT EVERYTHING ELSE.

Temperature: 0.6 Top K: 20 Repeat penalty: OFF Min P sampling: OFF Top P sampling: 0.95

SYSTEM PROMPT:

"You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem."




## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("leonsarmiento/Hermes-4.3-36B-3bit-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```