pvs_oracle / sft_fastapi.py
ma7583's picture
Update sft_fastapi.py
3a307f4 verified
from fastapi import FastAPI, Query
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import os
from typing import List, Optional
import yaml
from types import SimpleNamespace
app = FastAPI(title="PVS Step Recommender API", version="1.0.0")
# ------------------------------
# Global state (loaded once)
# ------------------------------
TOKENIZER = None
MODEL = None
TEST_DATASET = None
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
def load_config(path="config.yaml"):
with open(path, "r") as f:
cfg = yaml.safe_load(f)
return SimpleNamespace(**cfg)
def load_model_and_tokenizer(path: str):
global TOKENIZER, MODEL
if TOKENIZER is None or MODEL is None:
TOKENIZER = AutoTokenizer.from_pretrained(path, use_fast=True)
# device_map="auto" lets HF place layers; dtype="auto" for mixed precision when available
MODEL = AutoModelForCausalLM.from_pretrained(path, dtype="auto", device_map="auto")
# Some models have no pad token id; fall back to eos
if TOKENIZER.pad_token_id is None and TOKENIZER.eos_token_id is not None:
TOKENIZER.pad_token = TOKENIZER.eos_token
print("model and tokenizer loaded")
return TOKENIZER, MODEL
def recommend_top_k_steps(model, tokenizer, prompt: str, top_k: int = 3):
inputs = tokenizer(prompt, max_length=2048, truncation=True, return_tensors='pt')
inputs = {k: v.to(model.device) for k, v in inputs.items()}
stop_ids = {tokenizer.eos_token_id}
for token in ["END"]:
tok_id = tokenizer.convert_tokens_to_ids(token)
if tok_id is not None and tok_id != tokenizer.unk_token_id:
stop_ids.add(tok_id)
model.eval()
with torch.no_grad():
gen = model.generate(
**inputs,
do_sample=True,
num_return_sequences=top_k,
top_k=50,
top_p=0.9,
temperature=0.7,
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id,
eos_token_id=list(stop_ids),
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=128,
)
sequences = gen.sequences
scores = gen.scores
prompt_len = inputs["input_ids"].shape[1]
suggestions_with_logprob = []
for i in range(sequences.size(0)):
gen_ids = sequences[i, prompt_len:]
# Decode for display; keep raw text and also split first line as the command
gen_text = tokenizer.decode(gen_ids, skip_special_tokens=True).strip()
total_logprob, token_count = 0.0, 0
for t in range(min(len(scores), gen_ids.numel())):
token_id = int(gen_ids[t].item())
if token_id in stop_ids:
break
step_logits = scores[t][i]
step_logprobs = F.log_softmax(step_logits, dim=-1)
total_logprob += float(step_logprobs[token_id].item())
token_count += 1
length_norm_logprob = total_logprob / max(token_count, 1)
suggestions_with_logprob.append({
"log_prob": length_norm_logprob,
"command": gen_text.split("\n")[0]
})
suggestions_with_logprob.sort(key=lambda x: x["log_prob"], reverse=True)
return suggestions_with_logprob
# ------------------------------
# Pydantic models
# ------------------------------
class RecommendResponse(BaseModel):
prompt: str
top_k: int
suggestions: List[dict]
class RecommendRequest(BaseModel):
sequent: str
prev_commands: List[str]
top_k: Optional[int] = 3
# ------------------------------
# Startup: load config, model, and dataset
# ------------------------------
@app.on_event("startup")
def startup_event():
# Allow overriding via env vars, else use YAML
config_path = os.environ.get("PVS_API_CONFIG", "pvs_v5.yaml")
config = load_config(config_path)
save_path = os.environ.get("PVS_MODEL_PATH", getattr(config, 'save_path', None))
if not save_path:
raise RuntimeError("Model path not provided. Set PVS_MODEL_PATH or include save_path in config YAML.")
load_model_and_tokenizer(save_path)
# ------------------------------
# Routes
# ------------------------------
@app.get("/health")
def health():
return {"status": "ok", "device": DEVICE}
@app.get("/info")
def info():
return {
"model_name": getattr(MODEL.config, 'name_or_path', None),
"vocab_size": getattr(MODEL.config, 'vocab_size', None),
"eos_token_id": TOKENIZER.eos_token_id,
"pad_token_id": TOKENIZER.pad_token_id,
"device": str(MODEL.device),
}
@app.post("/recommend", response_model=RecommendResponse)
def recommend(req: RecommendRequest):
sequent = req.sequent.strip()
prev_cmds = req.prev_commands or []
prompt_lines = [f"Current Sequent:\n{sequent}\n"]
for i, cmd in enumerate(prev_cmds):
prompt_lines.append(f"Prev Command {i+1}: {cmd if cmd else 'None'}")
prompt = "\n".join(prompt_lines) + "\nNext Command:\n"
suggestions = recommend_top_k_steps(MODEL, TOKENIZER, prompt, top_k=req.top_k)
return RecommendResponse(prompt=prompt, top_k=req.top_k, suggestions=suggestions)
# if not prompt.strip():
# return JSONResponse(status_code=400, content={"error": "prompt must be a non-empty string"})
# suggestions = recommend_top_k_steps(MODEL, TOKENIZER, prompt, top_k=top_k)
# return RecommendResponse(prompt=prompt, top_k=top_k, suggestions=suggestions)
# ------------------------------
# Entrypoint for running with `python pvs_step_recommender_api.py`
# ------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("pvs_step_recommender_api:app", host="0.0.0.0", port=int(os.environ.get("PORT", 8000)), reload=False)