mangsense commited on
Commit
411d58a
·
verified ·
1 Parent(s): 36c0723

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - codexglue
5
+ ---
6
+
7
+ # CodeBERT fine-tuned for Insecure Code Detection 💾⛔
8
+
9
+
10
+ [codebert-base](https://huggingface.co/microsoft/codebert-base) fine-tuned on [CodeXGLUE -- Defect Detection](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection) dataset for **Insecure Code Detection** downstream task.
11
+
12
+ ## Details of [CodeBERT](https://arxiv.org/abs/2002.08155)
13
+
14
+ We present CodeBERT, a bimodal pre-trained model for programming language (PL) and nat-ural language (NL). CodeBERT learns general-purpose representations that support downstream NL-PL applications such as natural language codesearch, code documentation generation, etc. We develop CodeBERT with Transformer-based neural architecture, and train it with a hybrid objective function that incorporates the pre-training task of replaced token detection, which is to detect plausible alternatives sampled from generators. This enables us to utilize both bimodal data of NL-PL pairs and unimodal data, where the former provides input tokens for model training while the latter helps to learn better generators. We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters. Results show that CodeBERT achieves state-of-the-art performance on both natural language code search and code documentation generation tasks. Furthermore, to investigate what type of knowledge is learned in CodeBERT, we construct a dataset for NL-PL probing, and evaluate in a zero-shot setting where parameters of pre-trained models are fixed. Results show that CodeBERT performs better than previous pre-trained models on NL-PL probing.
15
+
16
+ ## Details of the downstream task (code classification) - Dataset 📚
17
+
18
+ Given a source code, the task is to identify whether it is an insecure code that may attack software systems, such as resource leaks, use-after-free vulnerabilities and DoS attack. We treat the task as binary classification (0/1), where 1 stands for insecure code and 0 for secure code.
19
+
20
+ The [dataset](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection) used comes from the paper [*Devign*: Effective Vulnerability Identification by Learning Comprehensive Program Semantics via Graph Neural Networks](http://papers.nips.cc/paper/9209-devign-effective-vulnerability-identification-by-learning-comprehensive-program-semantics-via-graph-neural-networks.pdf). All projects are combined and splitted 80%/10%/10% for training/dev/test.
21
+
22
+ Data statistics of the dataset are shown in the below table:
23
+
24
+ | | #Examples |
25
+ | ----- | :-------: |
26
+ | Train | 21,854 |
27
+ | Dev | 2,732 |
28
+ | Test | 2,732 |
29
+
30
+ ## Test set metrics 🧾
31
+
32
+ | Methods | ACC |
33
+ | -------- | :-------: |
34
+ | BiLSTM | 59.37 |
35
+ | TextCNN | 60.69 |
36
+ | [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf) | 61.05 |
37
+ | [CodeBERT](https://arxiv.org/pdf/2002.08155.pdf) | 62.08 |
38
+ | [Ours](https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code) | **65.30** |
39
+
40
+
41
+ ## Model in Action 🚀
42
+
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
45
+ import torch
46
+ import numpy as np
47
+ tokenizer = AutoTokenizer.from_pretrained('mrm8488/codebert-base-finetuned-detect-insecure-code')
48
+ model = AutoModelForSequenceClassification.from_pretrained('mrm8488/codebert-base-finetuned-detect-insecure-code')
49
+
50
+ inputs = tokenizer("your code here", return_tensors="pt", truncation=True, padding='max_length')
51
+ labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
52
+ outputs = model(**inputs, labels=labels)
53
+ loss = outputs.loss
54
+ logits = outputs.logits
55
+
56
+ print(np.argmax(logits.detach().numpy()))
57
+ ```
58
+
59
+ > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
60
+
61
+ > Made with <span style="color: #e25555;">&hearts;</span> in Spain
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/codebert-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "type_vocab_size": 1,
23
+ "vocab_size": 50265
24
+ }
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b209dcc0f442c10881ed1daed99a62a7ecfaa29812fcd7e09bea32e6a85c044
3
+ size 498595901
gitattributes ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
9
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dc535556492bcc8a42b21cbfc912bb3ca29673106e12a857b4fe9ba4466fde1
3
+ size 498677271
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": "/root/.cache/torch/transformers/5a191080da4f00859b5d3d29529f57894583e00ab07b7c940d65c33db4b25d4d.16f949018cf247a2ea7465a74ca9a292212875e5fd72f969e0807011e7f192e4", "tokenizer_file": null, "name_or_path": "microsoft/codebert-base"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff